Skip to main content
Erschienen in: Wireless Personal Communications 1/2020

10.01.2020

Technologies Assisting the Paradigm Shift from 4G to 5G

verfasst von: Jolly Parikh, Anuradha Basu

Erschienen in: Wireless Personal Communications | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to exponential increase in the capacity demands raised by the smart devices and multimedia applications of new generations, existing cellular networks are facing significant burden. To provide a solution to the challenges faced by 4th generation (4G) networks, there is utmost need of improving existing technologies as well as developing new technologies to meet the key requirements of 5th generation (5G) networks as well as the Next Generation Mobile Networks (NGMNs). Networks having high capacity, low latency, faster data rates and better quality of service is the vision of 5G mobile networks. In order to achieve this, we will need wider bandwidths as offered by millimeter wave bands, more spatial diversity as offered by Massive multiple input multiple output technology, denser networks as designed in dense small cell deployment technology, new waveforms using efficient coding techniques such as filtered orthogonal frequency division multiplexing and filter bank multiple carrier, a new architecture supporting virtualization and advance computing techniques as in network function virtualization, software defined networks, cloud radio access networks. Many more technologies are yet to be introduced. This tutorial gives an insight to the candidate technologies proposed by researchers till date and the progress made, for defining the standards to meet the requirements of 5G and NGMNs. It explains the basic concept of the technology and the latest development in the industry to support this technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access,6, 15754–15776.CrossRef Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access,6, 15754–15776.CrossRef
4.
Zurück zum Zitat Wang, D., Song, B., Chen, D., & Du, X. J. (2019). Intelligent cognitive radio in 5G: AI-based hierarchical cognitive cellular networks. IEEE Wireless Communication,26, 54–61.CrossRef Wang, D., Song, B., Chen, D., & Du, X. J. (2019). Intelligent cognitive radio in 5G: AI-based hierarchical cognitive cellular networks. IEEE Wireless Communication,26, 54–61.CrossRef
5.
Zurück zum Zitat Tawk, Y., Costantine, J., & Christodoulou, C. J. (2014). Reconfigurable filtennas and MIMO in cognitive radio applications. IEEE Transaction on Antennas Propagation,62(3), 1074–1083.CrossRef Tawk, Y., Costantine, J., & Christodoulou, C. J. (2014). Reconfigurable filtennas and MIMO in cognitive radio applications. IEEE Transaction on Antennas Propagation,62(3), 1074–1083.CrossRef
6.
Zurück zum Zitat Thummaluru, R., Ameen, M., & Chaudhary, R. K. (2019). Four-port MIMO cognitive radio system for midband 5G applications. IEEE Transactions on Antennas and Propagation,67(8), 2758–2766.CrossRef Thummaluru, R., Ameen, M., & Chaudhary, R. K. (2019). Four-port MIMO cognitive radio system for midband 5G applications. IEEE Transactions on Antennas and Propagation,67(8), 2758–2766.CrossRef
7.
Zurück zum Zitat López-Pérez, D., Ding, M., Claussen, H., & Jafari, A. H. (2015). Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys and Tutorials,17(4), 2078–2101.CrossRef López-Pérez, D., Ding, M., Claussen, H., & Jafari, A. H. (2015). Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys and Tutorials,17(4), 2078–2101.CrossRef
8.
Zurück zum Zitat Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proc. IEEE,105(12), 2347–2381.CrossRef Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proc. IEEE,105(12), 2347–2381.CrossRef
9.
Zurück zum Zitat Vaezi, M., Ding, Z., & Poor, H. V. (2019). Multiple access techniques for 5G wireless networks and beyond. Berlin: Springer.CrossRef Vaezi, M., Ding, Z., & Poor, H. V. (2019). Multiple access techniques for 5G wireless networks and beyond. Berlin: Springer.CrossRef
10.
Zurück zum Zitat Li, J., Kearney, K., Bala, E., & Yang, R. (2013). A resource block based filtered OFDM scheme and performance comparison. In Proceedings of the international conference on telecommunications (ICT), Casablanca, Morocco (pp. 1–5). Li, J., Kearney, K., Bala, E., & Yang, R. (2013). A resource block based filtered OFDM scheme and performance comparison. In Proceedings of the international conference on telecommunications (ICT), Casablanca, Morocco (pp. 1–5).
11.
Zurück zum Zitat Vakilian, V., Wild, T., Schaich, F., Brink, S., & Frigon, J. F. (2013). Universal-filtered multi-carrier technique for wireless systems beyond LTE. In Proceedings of the IEEE GLOBECOM workshops (GC Wkshps), Atlanta, GA, USA (pp. 223–228). Vakilian, V., Wild, T., Schaich, F., Brink, S., & Frigon, J. F. (2013). Universal-filtered multi-carrier technique for wireless systems beyond LTE. In Proceedings of the IEEE GLOBECOM workshops (GC Wkshps), Atlanta, GA, USA (pp. 223–228).
12.
Zurück zum Zitat Schaich, F., Wild, T., & Chen, Y. (2014). Waveform contenders for 5G—suitability for short packet and low latency transmissions. In Proceedings of the IEEE vehicular technology conference (VTC Spring), Seoul, Korea (pp. 1–5). Schaich, F., Wild, T., & Chen, Y. (2014). Waveform contenders for 5G—suitability for short packet and low latency transmissions. In Proceedings of the IEEE vehicular technology conference (VTC Spring), Seoul, Korea (pp. 1–5).
13.
Zurück zum Zitat Zhang, X., Jia, M., Chen, L., Ma, J., & Qiu, J. (2015). Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks. In Proceedings of the IEEE global communication conference (GLOBECOM), San Diego, CA, USA (pp. 1–6). Zhang, X., Jia, M., Chen, L., Ma, J., & Qiu, J. (2015). Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks. In Proceedings of the IEEE global communication conference (GLOBECOM), San Diego, CA, USA (pp. 1–6).
14.
Zurück zum Zitat Abdoli, J., Jia, M., & Ma, J. (2015).Filtered OFDM: A new waveform for future wireless systems. In Proceedings of the IEEE 16th international workshop signal processing advanced wireless communication (SPAWC), Stockholm, Sweden, pp. 66–70. Abdoli, J., Jia, M., & Ma, J. (2015).Filtered OFDM: A new waveform for future wireless systems. In Proceedings of the IEEE 16th international workshop signal processing advanced wireless communication (SPAWC), Stockholm, Sweden, pp. 66–70.
15.
Zurück zum Zitat Bellanger, M., Renfors, M., Ihalainen, T., & da Rocha, C. A. F. (2010). OFDM and FBMC transmission techniques: A compatible high performance proposal for broadband power line communications. In International symposium on power line communications and its applications (ISPLC), Rio de Janeiro, Brazil (pp. 154–159). Bellanger, M., Renfors, M., Ihalainen, T., & da Rocha, C. A. F. (2010). OFDM and FBMC transmission techniques: A compatible high performance proposal for broadband power line communications. In International symposium on power line communications and its applications (ISPLC), Rio de Janeiro, Brazil (pp. 154–159).
16.
Zurück zum Zitat Farhang-Boroujeny, B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine,28(3), 92–112.CrossRef Farhang-Boroujeny, B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine,28(3), 92–112.CrossRef
17.
Zurück zum Zitat Kim, C., Kim, K., Yun, Y. H., Ho, Z., Lee, B., & Seol, J. Y. (2015). QAM-FBMC: A new multi-carrier system for post-OFDM wireless communications. In Proceedings of the IEEE global communications conference (GLOBECOM), San Diego, CA, USA (pp. 1–6). Kim, C., Kim, K., Yun, Y. H., Ho, Z., Lee, B., & Seol, J. Y. (2015). QAM-FBMC: A new multi-carrier system for post-OFDM wireless communications. In Proceedings of the IEEE global communications conference (GLOBECOM), San Diego, CA, USA (pp. 1–6).
18.
Zurück zum Zitat Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications,62(9), 3045–3061.CrossRef Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications,62(9), 3045–3061.CrossRef
19.
Zurück zum Zitat G. Fettweis, M. Krondorf, & S. Bittner (2009). GFDM - generalized frequency division multiplexing. In Proceedings of the IEEE vehicle technology conference (VTC Spring), Barcelona, Spain (pp. 1–4). G. Fettweis, M. Krondorf, & S. Bittner (2009). GFDM - generalized frequency division multiplexing. In Proceedings of the IEEE vehicle technology conference (VTC Spring), Barcelona, Spain (pp. 1–4).
20.
Zurück zum Zitat Zhao, Z., Schellmann, M., Wang Q., Gong X., Boehnke R., & Xu, W. (2015). Pulse shaped OFDM for asynchronous uplink access. In Proceedings of the asilomar conference signals, systems and computers, Monterey, USA (pp. 3–7). Zhao, Z., Schellmann, M., Wang Q., Gong X., Boehnke R., & Xu, W. (2015). Pulse shaped OFDM for asynchronous uplink access. In Proceedings of the asilomar conference signals, systems and computers, Monterey, USA (pp. 3–7).
21.
Zurück zum Zitat Chung, C. D. (2006). Spectrally precoded OFDM. IEEE Transactions on Communications,54(12), 2173–2185.CrossRef Chung, C. D. (2006). Spectrally precoded OFDM. IEEE Transactions on Communications,54(12), 2173–2185.CrossRef
23.
Zurück zum Zitat Kumar, U., Ibars, C., Bhorkar, A., & Jung, H. (2015). A waveform for 5G: guard interval DFT-s-OFDM. In Proc.of IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6). Kumar, U., Ibars, C., Bhorkar, A., & Jung, H. (2015). A waveform for 5G: guard interval DFT-s-OFDM. In Proc.of IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6).
24.
Zurück zum Zitat Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of IEEE vehicular technology conference (VTC Fall), Las Vegas, NV, USA (pp. 1–5). Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of IEEE vehicular technology conference (VTC Fall), Las Vegas, NV, USA (pp. 1–5).
25.
Zurück zum Zitat GPP, RP-160680. (2016). Downlink multiuser superposition transmissions for LTE. Mar. 2016. GPP, RP-160680. (2016). Downlink multiuser superposition transmissions for LTE. Mar. 2016.
26.
Zurück zum Zitat Choi, J. (2015). Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Transactions on Communications,63(3), 791–800.CrossRef Choi, J. (2015). Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Transactions on Communications,63(3), 791–800.CrossRef
27.
Zurück zum Zitat Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications,98(3), 403–414.CrossRef Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications,98(3), 403–414.CrossRef
28.
Zurück zum Zitat GPP R1-154999. (2015). TP for classification of MUST schemes. TSG-RAN WG1 #82, Beijing, China. GPP R1-154999. (2015). TP for classification of MUST schemes. TSG-RAN WG1 #82, Beijing, China.
29.
Zurück zum Zitat Sahin, A., Yang, R., Ghosh, M., & Olesen, R. L. (2015). An improved unique word DFT-spread OFDM scheme for 5G systems. In Proceedings of IEEE Globecom workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6). Sahin, A., Yang, R., Ghosh, M., & Olesen, R. L. (2015). An improved unique word DFT-spread OFDM scheme for 5G systems. In Proceedings of IEEE Globecom workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6).
30.
Zurück zum Zitat Kumar, U., Ibars, C., Bhorkar, A., & Jung, H. (2015). A waveform for 5G: Guard interval DFT-s-OFDM. In Proceedings of IEEE globecom workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6). Kumar, U., Ibars, C., Bhorkar, A., & Jung, H. (2015). A waveform for 5G: Guard interval DFT-s-OFDM. In Proceedings of IEEE globecom workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6).
31.
Zurück zum Zitat Berardinelli, G., Tavares, F. M. L., Sorensen, T. B., Mogensen, P., & Pajukoski, K. (2013). Zero-tail DFT-spread-OFDM signals. In Proceedings of IEEE globecom workshops (GC Wkshps), Atlanta, GA, USA (pp. 229–234). Berardinelli, G., Tavares, F. M. L., Sorensen, T. B., Mogensen, P., & Pajukoski, K. (2013). Zero-tail DFT-spread-OFDM signals. In Proceedings of IEEE globecom workshops (GC Wkshps), Atlanta, GA, USA (pp. 229–234).
32.
Zurück zum Zitat Achaichia, P., Bot, M. L., & Siohan, P. (2011). Windowed OFDM versus OFDM/OQAM: A transmission capacity comparison in the HomePlug AV context. In IEEE international symposium on power line communications and its applications (ISPLC), Udine, Italy (pp. 405–410). Achaichia, P., Bot, M. L., & Siohan, P. (2011). Windowed OFDM versus OFDM/OQAM: A transmission capacity comparison in the HomePlug AV context. In IEEE international symposium on power line communications and its applications (ISPLC), Udine, Italy (pp. 405–410).
33.
Zurück zum Zitat Kim, D., & Stuber, G. L. (1998). Residual ISI cancellation for OFDM with applications to HDTV broadcasting. IEEE Journal on Selected Areas in Communications,16(8), 1590–1599.CrossRef Kim, D., & Stuber, G. L. (1998). Residual ISI cancellation for OFDM with applications to HDTV broadcasting. IEEE Journal on Selected Areas in Communications,16(8), 1590–1599.CrossRef
34.
Zurück zum Zitat Li, X., & Cimini, L. J. (1998). Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,2(5), 131–133.CrossRef Li, X., & Cimini, L. J. (1998). Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,2(5), 131–133.CrossRef
35.
Zurück zum Zitat Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of IEEE Vehicular Technology Conference (VTC Spring), Dresden, Germany (pp. 1–5). Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of IEEE Vehicular Technology Conference (VTC Spring), Dresden, Germany (pp. 1–5).
36.
Zurück zum Zitat Ding, Z., Dai, L., & Poor, H. V. (2016). MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access,4, 1393–1405.CrossRef Ding, Z., Dai, L., & Poor, H. V. (2016). MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access,4, 1393–1405.CrossRef
37.
Zurück zum Zitat Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications,15(6), 4438–4454.CrossRef Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications,15(6), 4438–4454.CrossRef
38.
Zurück zum Zitat Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications,15(1), 537–552.CrossRef Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications,15(1), 537–552.CrossRef
39.
Zurück zum Zitat Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2015). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters,20(7), 1465–1468. Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2015). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters,20(7), 1465–1468.
40.
Zurück zum Zitat Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters,22(10), 1647–1651.CrossRef Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters,22(10), 1647–1651.CrossRef
41.
Zurück zum Zitat Cui, J., Ding, Z., & Fan, P. (2016). A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Processing Letters,23(9), 1226–1230.CrossRef Cui, J., Ding, Z., & Fan, P. (2016). A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Processing Letters,23(9), 1226–1230.CrossRef
42.
Zurück zum Zitat Mei, J., Yao, L., Long, H., & Zheng, K. (2016). Joint user pairing and power allocation for downlink non-orthogonal multiple access systems. In Proceedings of conference on communications (ICC), Kuala Lumpur, Malaysia (pp. 1–6). Mei, J., Yao, L., Long, H., & Zheng, K. (2016). Joint user pairing and power allocation for downlink non-orthogonal multiple access systems. In Proceedings of conference on communications (ICC), Kuala Lumpur, Malaysia (pp. 1–6).
43.
Zurück zum Zitat Liu, F., Mahonen, P., & Petrova, M. (2016). Proportional fairness-based power allocation and user set selection for downlink NOMA systems. In Proceedings of conference on communications (ICC), Kuala Lumpur, Malaysia, (pp. 1–6). Liu, F., Mahonen, P., & Petrova, M. (2016). Proportional fairness-based power allocation and user set selection for downlink NOMA systems. In Proceedings of conference on communications (ICC), Kuala Lumpur, Malaysia, (pp. 1–6).
44.
Zurück zum Zitat Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In Proceedings of international symposium on wireless communication systems (ISWCS), Paris, France (pp. 476–480). Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In Proceedings of international symposium on wireless communication systems (ISWCS), Paris, France (pp. 476–480).
45.
Zurück zum Zitat Liu, F., Mahonen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), Hong Kong, P.R. China (pp. 1127–1131). Liu, F., Mahonen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), Hong Kong, P.R. China (pp. 1127–1131).
46.
Zurück zum Zitat Sun, Y., Ng, D. W. K., Ding, Z. & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. In Proceedings of the global communications conference (GLOBECOM), Washington, DC, USA (pp. 1–6). Sun, Y., Ng, D. W. K., Ding, Z. & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. In Proceedings of the global communications conference (GLOBECOM), Washington, DC, USA (pp. 1–6).
47.
Zurück zum Zitat Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions on Wireless Communications,15(12), 8580–8594.CrossRef Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions on Wireless Communications,15(12), 8580–8594.CrossRef
48.
Zurück zum Zitat Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications,15(12), 8422–8436.CrossRef Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications,15(12), 8422–8436.CrossRef
49.
Zurück zum Zitat Al-Imari, M., Xiao, P., Imran, M. A., & Tafazolli, R. (2014). Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings of international symposium on wireless communication systems (ISWCS), Barcelona, Spain (pp. 781–785). Al-Imari, M., Xiao, P., Imran, M. A., & Tafazolli, R. (2014). Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings of international symposium on wireless communication systems (ISWCS), Barcelona, Spain (pp. 781–785).
51.
Zurück zum Zitat Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters,5(4), 416–419.CrossRef Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters,5(4), 416–419.CrossRef
52.
Zurück zum Zitat Tian, Y., Nix, A., & Beach, M. (2016). On the performance of opportunistic NOMA in downlink CoMP networks. IEEE Communications Letters,20(5), 998–1001.CrossRef Tian, Y., Nix, A., & Beach, M. (2016). On the performance of opportunistic NOMA in downlink CoMP networks. IEEE Communications Letters,20(5), 998–1001.CrossRef
53.
Zurück zum Zitat Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters,19(11), 2037–2040.CrossRef Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters,19(11), 2037–2040.CrossRef
54.
Zurück zum Zitat Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters,19(10), 1686–1689.CrossRef Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters,19(10), 1686–1689.CrossRef
55.
Zurück zum Zitat Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters,19(8), 1462–1465.CrossRef Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters,19(8), 1462–1465.CrossRef
56.
Zurück zum Zitat Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters,18(2), 313–316.CrossRef Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters,18(2), 313–316.CrossRef
57.
Zurück zum Zitat Hoshyar, R., Wathan, F. P., & Tafazolli, R. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Transactions on Signal Processing,56(4), 1616–1626.MathSciNetMATHCrossRef Hoshyar, R., Wathan, F. P., & Tafazolli, R. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Transactions on Signal Processing,56(4), 1616–1626.MathSciNetMATHCrossRef
58.
Zurück zum Zitat Hanzo, L. L., & Keller, T. (2007). OFDM and MC-CDMA: A primer. New Yrok: Wiley. Hanzo, L. L., & Keller, T. (2007). OFDM and MC-CDMA: A primer. New Yrok: Wiley.
59.
Zurück zum Zitat Hanzo, L., Akhtman, Y., Akhtman, J., Wang, L., & Jiang, M. (2010). MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers. New York: Wiley.CrossRef Hanzo, L., Akhtman, Y., Akhtman, J., Wang, L., & Jiang, M. (2010). MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers. New York: Wiley.CrossRef
60.
Zurück zum Zitat Brannstrom, F., Aulin, T. M., & Rasmussen, L. K. (2002). Iterative detectors for trellis-code multiple-access. IEEE Transactions on Communications,50(9), 1478–1485.CrossRef Brannstrom, F., Aulin, T. M., & Rasmussen, L. K. (2002). Iterative detectors for trellis-code multiple-access. IEEE Transactions on Communications,50(9), 1478–1485.CrossRef
61.
Zurück zum Zitat Liu, L., Tong, J., & Ping, L. (2006). Analysis and optimization of CDMA systems with chip-level interleavers. IEEE Journal on Selected Areas in Communications,24(1), 141–150.CrossRef Liu, L., Tong, J., & Ping, L. (2006). Analysis and optimization of CDMA systems with chip-level interleavers. IEEE Journal on Selected Areas in Communications,24(1), 141–150.CrossRef
62.
Zurück zum Zitat Chen, S., Ren, B., Gao, Q., Kang, S., Sun, S., & Niu, K. (2016). Pattern division multiple access (PDMA)—A novel non-orthogonal multiple access for 5G radio networks. IEEE Transactions on Vehicular Technology,PP(99), 1–1. Chen, S., Ren, B., Gao, Q., Kang, S., Sun, S., & Niu, K. (2016). Pattern division multiple access (PDMA)—A novel non-orthogonal multiple access for 5G radio networks. IEEE Transactions on Vehicular Technology,PP(99), 1–1.
63.
Zurück zum Zitat Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). Multi-user shared access for internet of things. In Proceedings of IEEE vehicular technology conference (VTC). Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). Multi-user shared access for internet of things. In Proceedings of IEEE vehicular technology conference (VTC).
64.
Zurück zum Zitat Naim, M. A., Fonseka, J. P., & Dowling, E. M. (2015). A building block approach for designing multilevel coding schemes. IEEE Communications Letters,19(1), 2–5.CrossRef Naim, M. A., Fonseka, J. P., & Dowling, E. M. (2015). A building block approach for designing multilevel coding schemes. IEEE Communications Letters,19(1), 2–5.CrossRef
65.
Zurück zum Zitat Dowling, E. M., & Fonseka, J. P. (2011). Tiled-building-block trellis encoders. US Patent: 8 007 790, issued date Dec. 13, 2011. Dowling, E. M., & Fonseka, J. P. (2011). Tiled-building-block trellis encoders. US Patent: 8 007 790, issued date Dec. 13, 2011.
66.
Zurück zum Zitat Fang, D., Huang, Y., Ding, Z., Geraci, G., Shieh, S. L., & Claussen, H. (2016). Lattice partition multiple access: A new method of downlink non-orthogonal multiuser transmissions. In Proceedings of the global communications conference (GLOBECOM), Washington, DC, USA. Fang, D., Huang, Y., Ding, Z., Geraci, G., Shieh, S. L., & Claussen, H. (2016). Lattice partition multiple access: A new method of downlink non-orthogonal multiuser transmissions. In Proceedings of the global communications conference (GLOBECOM), Washington, DC, USA.
68.
Zurück zum Zitat da Silva, P. R. B., & Silva, D. (2014). Design of lattice network codes based on construction D. In Proceedings of the international telecommunications symposium (ITS), Sao Paulo, Brazil (pp. 1–5). da Silva, P. R. B., & Silva, D. (2014). Design of lattice network codes based on construction D. In Proceedings of the international telecommunications symposium (ITS), Sao Paulo, Brazil (pp. 1–5).
69.
Zurück zum Zitat Xu, Y., Sun, H., Hu, R. Q., & Qian, Y. (2015). Cooperative non-orthogonal multiple access in heterogeneous networks. In Proceedings of the global communications conference (GLOBECOM) (pp. 1–6). Xu, Y., Sun, H., Hu, R. Q., & Qian, Y. (2015). Cooperative non-orthogonal multiple access in heterogeneous networks. In Proceedings of the global communications conference (GLOBECOM) (pp. 1–6).
70.
Zurück zum Zitat Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., & Nallanathan, A. (2016). Non-orthogonal multiple access in massive MIMO aided heterogeneous networks. In IEEE proceedings of the global communications conference (GLOBECOM), Washington, DC, USA (pp. 1–6). Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., & Nallanathan, A. (2016). Non-orthogonal multiple access in massive MIMO aided heterogeneous networks. In IEEE proceedings of the global communications conference (GLOBECOM), Washington, DC, USA (pp. 1–6).
72.
Zurück zum Zitat Cui, J., Liu, Y., Ding, Z., Fan, P., & Nallanathan, A. (2017). Optimal user scheduling and power allocation for millimeter wave NOMA systems. arXiv preprint arXiv:1705.03064. Cui, J., Liu, Y., Ding, Z., Fan, P., & Nallanathan, A. (2017). Optimal user scheduling and power allocation for millimeter wave NOMA systems. arXiv preprint arXiv:​1705.​03064.
73.
Zurück zum Zitat Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology,65(12), 10152–10157.CrossRef Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology,65(12), 10152–10157.CrossRef
74.
Zurück zum Zitat Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & Alonso-Zarate, J. (2016). NOMA-based D2D communications towards 5G. In IEEE proceedings of the global communications conference (GLOBECOM), Wanshington, DC, USA (pp. 1–6). Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & Alonso-Zarate, J. (2016). NOMA-based D2D communications towards 5G. In IEEE proceedings of the global communications conference (GLOBECOM), Wanshington, DC, USA (pp. 1–6).
75.
Zurück zum Zitat Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine,52(2), 106–113.CrossRef Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine,52(2), 106–113.CrossRef
77.
Zurück zum Zitat Chris Pearson. (2019). 5G Radios are packed with advanced antenna technology. White paper, 5G America. Chris Pearson. (2019). 5G Radios are packed with advanced antenna technology. White paper, 5G America.
82.
Zurück zum Zitat Yamazato, T., Kawagita, N., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2017). The uplink visible light communication beacon system for universal traffic management. IEEE Access,5, 22282–22290.CrossRef Yamazato, T., Kawagita, N., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2017). The uplink visible light communication beacon system for universal traffic management. IEEE Access,5, 22282–22290.CrossRef
83.
Zurück zum Zitat Pergoloni, S., Biagi, M., Colonnese, S., Cusani, R., & Scarano, G. (2015). Coverage optimization of 5G atto-cells for visible light communications access. In Proceedings of the IEEE international workshop on measurements and networking (M&N), Coimbra, Portugal (pp. 12–13). Pergoloni, S., Biagi, M., Colonnese, S., Cusani, R., & Scarano, G. (2015). Coverage optimization of 5G atto-cells for visible light communications access. In Proceedings of the IEEE international workshop on measurements and networking (M&N), Coimbra, Portugal (pp. 12–13).
84.
Zurück zum Zitat Ulgen, O., Ozmat, U., & Gunaydin, E. (2018). Hybrid implementation of millimeter wave and visible light communications for 5G networks. In Proceedings of the telecommunications forum (TELFOR), Belgrade, Serbia (pp. 20–21). Ulgen, O., Ozmat, U., & Gunaydin, E. (2018). Hybrid implementation of millimeter wave and visible light communications for 5G networks. In Proceedings of the telecommunications forum (TELFOR), Belgrade, Serbia (pp. 20–21).
85.
Zurück zum Zitat Chi, N., Shi, J., Zhou, Y., Wang, Y., Zhang, J., & Huang, X. (2016). High speed LED based visible light communication for 5G wireless backhaul. In Proceedings of the IEEE photonics society summer topical meeting series (SUM), Newport Beach, CA, USA (pp. 11–13). Chi, N., Shi, J., Zhou, Y., Wang, Y., Zhang, J., & Huang, X. (2016). High speed LED based visible light communication for 5G wireless backhaul. In Proceedings of the IEEE photonics society summer topical meeting series (SUM), Newport Beach, CA, USA (pp. 11–13).
86.
Zurück zum Zitat Warmerdam, K., Pandharipande, A., & Caicedo, D. (2015). Connectivity in IoT indoor lighting systems with visible light communications. In Proceedings of the IEEE online conference on green communications. (OnlineGreenComm), Piscataway, NJ, USA (pp. 47–52). Warmerdam, K., Pandharipande, A., & Caicedo, D. (2015). Connectivity in IoT indoor lighting systems with visible light communications. In Proceedings of the IEEE online conference on green communications. (OnlineGreenComm), Piscataway, NJ, USA (pp. 47–52).
87.
Zurück zum Zitat Feng, L., Yang, H., Hu, R. Q., & Wang, J. (2018). mmWave and VLC-based indoor channel models in 5G wireless networks. IEEE Wireless Communications,25, 70–77.CrossRef Feng, L., Yang, H., Hu, R. Q., & Wang, J. (2018). mmWave and VLC-based indoor channel models in 5G wireless networks. IEEE Wireless Communications,25, 70–77.CrossRef
88.
Zurück zum Zitat BenMimoune, A., & Kadoch, M. (2017). Relay technology for 5G networks and IoT applications. In D. Acharjya & M. Geetha (Eds.), Internet of things: Novel advances and envisioned applications. Studies in big data (Vol. 25). Cham: Springer. BenMimoune, A., & Kadoch, M. (2017). Relay technology for 5G networks and IoT applications. In D. Acharjya & M. Geetha (Eds.), Internet of things: Novel advances and envisioned applications. Studies in big data (Vol. 25). Cham: Springer.
89.
Zurück zum Zitat Deng, J. (2018). Millimeter-wave communication and mobile relaying in 5G cellular networks. Doctoral dissertations, ISBN: 978-952-60-8179-3. Deng, J. (2018). Millimeter-wave communication and mobile relaying in 5G cellular networks. Doctoral dissertations, ISBN: 978-952-60-8179-3.
92.
Zurück zum Zitat Ansari, R., Hassan, S., & Chrysostomou, C. (2017). Device-to-device communication for 5G. In M. Ali Imran, S. Ali Raza Zaidi, M. Zeeshan Shakir (Eds.), Access, Fronthaul and Backhaul networks for 5G and beyond (p. 584). London: IET. Ansari, R., Hassan, S., & Chrysostomou, C. (2017). Device-to-device communication for 5G. In M. Ali Imran, S. Ali Raza Zaidi, M. Zeeshan Shakir (Eds.), Access, Fronthaul and Backhaul networks for 5G and beyond (p. 584). London: IET.
94.
Zurück zum Zitat Ni, J., Zhang, K., Lin, X., & Shen, X. (2017). Securing fog computing for internet of things applications: Challenges and solutions. IEEE Communications Surveys and Tutorials,20, 601–628.CrossRef Ni, J., Zhang, K., Lin, X., & Shen, X. (2017). Securing fog computing for internet of things applications: Challenges and solutions. IEEE Communications Surveys and Tutorials,20, 601–628.CrossRef
95.
Zurück zum Zitat Choi, N., Kim, D., Lee, S., & Yi, Y. (2017). Fog operating system for user-oriented IoT services: Challenges and research directions. IEEE Communications Magazine,55, 2–9.CrossRef Choi, N., Kim, D., Lee, S., & Yi, Y. (2017). Fog operating system for user-oriented IoT services: Challenges and research directions. IEEE Communications Magazine,55, 2–9.CrossRef
96.
Zurück zum Zitat Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data (pp. 37–42). ACM. Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data (pp. 37–42). ACM.
98.
Zurück zum Zitat Yousefpour, A., Ishigaki, G., & Jue, J. P. (2017). Fog computing: Towardsminimizing delay in the internet of things. In The proceedings of IEEE international conference on edge computing (EDGE) (pp. 17–24). Yousefpour, A., Ishigaki, G., & Jue, J. P. (2017). Fog computing: Towardsminimizing delay in the internet of things. In The proceedings of IEEE international conference on edge computing (EDGE) (pp. 17–24).
99.
Zurück zum Zitat Jiang, Y., Zhe, H., & Danny, H. K. (2018). Challenges and Solutions in Fog Computing Orchestration. IEEE Network,32(3), 122–129.CrossRef Jiang, Y., Zhe, H., & Danny, H. K. (2018). Challenges and Solutions in Fog Computing Orchestration. IEEE Network,32(3), 122–129.CrossRef
102.
Zurück zum Zitat Barakabitze, A. A., Ahmad, A. Hines, & Mijumbi, A. (2020). 5G network slicing using SDN and NFV- A survey of taxonomy, architectures and future challenges. Science Direct, computer networks,167(11), 106984.CrossRef Barakabitze, A. A., Ahmad, A. Hines, & Mijumbi, A. (2020). 5G network slicing using SDN and NFV- A survey of taxonomy, architectures and future challenges. Science Direct, computer networks,167(11), 106984.CrossRef
Metadaten
Titel
Technologies Assisting the Paradigm Shift from 4G to 5G
verfasst von
Jolly Parikh
Anuradha Basu
Publikationsdatum
10.01.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07053-3

Weitere Artikel der Ausgabe 1/2020

Wireless Personal Communications 1/2020 Zur Ausgabe

Neuer Inhalt