Skip to main content

2020 | Buch

Temperature-dependent Deformation and Fracture Behavior of a Talcum-filled Co-polymer

insite
SUCHEN

Über dieses Buch

David Degenhardt entwickelt ein elasto-viskoplastisches Materialmodell, um die temperatur- und spannungsabhängige Verformung und das Bruchverhalten thermoplastischer Polymere vorherzusagen. Das Modell basiert auf drei unterstützenden Umgebungstemperaturen, bei denen ein thermoplastisches Polymer in den Spannungszuständen 1) uniaxiale Spannung und Kompression, 2) biaxiale Spannung und 3) Scherung tiefgreifend charakterisiert wurde. Das Herzstück des Materialmodells bildet eine druckabhängige Ertragsfunktion mit einer nicht damit verbundenen Durchflussregel. Außerdem enthält er ein analytisches Härtungsgesetz und ein von der Dehnungsrate abhängiges Frakturkriterium. Das Modell ist mit Komponenten validiert, die bei unterschiedlichen Umgebungstemperaturen einer Stoßbelastung ausgesetzt sind. Der Vergleich der Simulation mit den Experimenten zeigt, dass Steifigkeit, Aushärtung, Bruchdehnung sowie Dicken gut erfasst werden können. Zum Autor: David Degenhardt ist Berechnungsingenieur in der Fahrwerksentwicklung eines deutschen Automobilherstellers und promovierte während seiner Zeit an der Technischen Universität Carolo-Wilhelmina zu Braunschweig.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Motivation
Abstract
The use of polymer materials has been strongly increasing in the automotive industry in the past years [9]. Main advantage is the low weight and the possibility to design complex structures. For the application in vehicles, many polymer components have to pass various crash load cases at room temperature (RT, 18–22°C) for the fulfillment of legal requirements [10].
David Degenhardt
Chapter 2. Objectives, Scope and Outline of Work
Abstract
Thermoplastic polymers are very sensitive to temperature and strain rate influence, which needs to be considered in the modeling of such materials. Many authors focused their studies on the reproduction of either the temperature influence of semi-crystalline thermoplastic polymers [22–24] or the rate-effects [25–27]. However, there is a need for material models capturing both features as well as several additional polymer-specific characteristics in order to achieve a good representation of the material behavior in the crash load case.
David Degenhardt
Chapter 3. State-of-the-Art
Abstract
The thesis presents a new material model for a thermoplastic polymer under different ambient temperatures which is validated by experimental results. This requires a full understanding of the manufacturing and complex characteristics of the thermoplastic material itself. Basis of the development build many different experiments on small specimens.
David Degenhardt
Chapter 4. Experimental Work
Abstract
Parts of the experimental work chapter have been published in [7] and [2].
David Degenhardt
Chapter 5. Temperature-dependent Material Model
Abstract
The modules of the temperature-dependent material model have been published in [7]. Large parts of the publication are used here for explaining the material model modules.
David Degenhardt
Chapter 6. Model Validation
Abstract
Large parts of the validation chapter have been published in the publication [2].
David Degenhardt
Chapter 7. Critical Assessment of the Material Model
Abstract
In general, the new temperature-dependent material model well predicts the deformation, damage and fracture behavior of the talcum-filled PP/PE co-polymer for varying load cases, as outlined by the validation tests. There are, however, limitations of the material model, which are discussed in the following.
David Degenhardt
Chapter 8. Conclusions and Recommendations
Abstract
A generalized temperature-dependent material model that is able to represent the material behavior in the crash-relevant temperature range from −35C to 90C has been introduced. The model uses a non-linear interpolation of the mechanical properties ranging from elasticity, over yielding and hardening up to fracture. The material model bases on a profound material characterization and data analysis and is parameterized with a parameter identification procedure partially based on minimizing the error of global and local quantities between simulation and experiment.
David Degenhardt
Backmatter
Metadaten
Titel
Temperature-dependent Deformation and Fracture Behavior of a Talcum-filled Co-polymer
verfasst von
David Degenhardt
Copyright-Jahr
2020
Electronic ISBN
978-3-658-30155-2
Print ISBN
978-3-658-30154-5
DOI
https://doi.org/10.1007/978-3-658-30155-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.