Skip to main content
Erschienen in: Neural Computing and Applications 2/2009

01.02.2009 | Original Article

The behaviour of the multi-layer perceptron and the support vector regression learning methods in the prediction of NO and NO2 concentrations in Szeged, Hungary

verfasst von: István Juhos, László Makra, Balázs Tóth

Erschienen in: Neural Computing and Applications | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main aim of this paper is to predict NO and NO2 concentrations 4 days in advance by comparing two artificial intelligence learning methods, namely, multi-layer perceptron and support vector machines, on two kinds of spatial embedding of the temporal time series. Hourly values of NO and NO2 concentrations, as well as meteorological variables were recorded in a cross-road monitoring station with heavy traffic in Szeged, in order to build a model for predicting NO and NO2 concentrations several hours in advance. The prediction of NO and NO2 concentrations was performed partly on the basis of their past values, and partly on the basis of temperature, humidity and wind speed data. Since NO can be predicted more accurately, its values were considered primarily when forecasting NO2. Time series prediction can be interpreted in a way that is suitable for artificial intelligence learning. Two effective learning methods, namely, multi-layer perceptron and support vector regression are used to provide efficient non-linear models for NO and NO2 time series predictions. Multi-layer perceptron is widely used to predict these time series, but support vector regression has not yet been applied for predicting NO and NO2 concentrations. Three commonly used linear algorithms were considered as references: 1-day persistence, average of several day persistence and linear regression. Based on the good results of the average of several day persistence, a prediction scheme was introduced, which forms weighted averages instead of simple ones. The optimization of these weights was performed with linear regression in linear case and with the learning methods mentioned in non-linear case. Concerning the NO predictions, the non-linear learning methods give significantly better predictions than the reference linear methods. In the case of NO2, the improvement of the prediction is considerable, however, it is less notable than for NO.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gardner MW, Dorling SR (1998) Artificial neural networks (the multi-layer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636CrossRef Gardner MW, Dorling SR (1998) Artificial neural networks (the multi-layer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636CrossRef
2.
Zurück zum Zitat Gardner MW, Dorling SR (1999) Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos Environ 33:709–719CrossRef Gardner MW, Dorling SR (1999) Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos Environ 33:709–719CrossRef
3.
Zurück zum Zitat Jorquera H, Pérez R, Cipriano A, Espejo A, Letelier MV, Acuňa G (1998) Forecasting ozone daily maximum levels at Santiago, Chile. Atmos Environ 32:3415–3424CrossRef Jorquera H, Pérez R, Cipriano A, Espejo A, Letelier MV, Acuňa G (1998) Forecasting ozone daily maximum levels at Santiago, Chile. Atmos Environ 32:3415–3424CrossRef
4.
Zurück zum Zitat Perez P, Trier A, Reyes J, (2000) Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos Environ 34:1189–1196CrossRef Perez P, Trier A, Reyes J, (2000) Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmos Environ 34:1189–1196CrossRef
5.
Zurück zum Zitat Perez P, Trier A (2001) Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile. Atmos Environ 35:1783–1789CrossRef Perez P, Trier A (2001) Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile. Atmos Environ 35:1783–1789CrossRef
6.
Zurück zum Zitat Perez P, (2001) Prediction of sulfur dioxide concentrations at a site near downtown Santiago, Chile. Atmos Environ 35:4929–4935CrossRef Perez P, (2001) Prediction of sulfur dioxide concentrations at a site near downtown Santiago, Chile. Atmos Environ 35:4929–4935CrossRef
7.
Zurück zum Zitat Perez P, Reyes J (2001) Prediction of particlulate air pollution using neural techniques. Neural Comput Appl 10(2):165–171MATHCrossRef Perez P, Reyes J (2001) Prediction of particlulate air pollution using neural techniques. Neural Comput Appl 10(2):165–171MATHCrossRef
8.
Zurück zum Zitat Chelani AB, Chalapati RCV, Phadke KM, Hasan MZ (2002) Prediction of sulphur dioxide concentration using artificial neural networks. Environ Modell Softw 17(2):159–166CrossRef Chelani AB, Chalapati RCV, Phadke KM, Hasan MZ (2002) Prediction of sulphur dioxide concentration using artificial neural networks. Environ Modell Softw 17(2):159–166CrossRef
9.
Zurück zum Zitat Mechaqrane A, Zouak M (2004) A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Comput Appl 13(1):32–37CrossRef Mechaqrane A, Zouak M (2004) A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building. Neural Comput Appl 13(1):32–37CrossRef
10.
Zurück zum Zitat Maqsood I, Riaz Khan M, Ajith Abraham A (2004) An ensemble of neural networks for weather forecasting. Neural Comput Appl 13(2):112–122 Maqsood I, Riaz Khan M, Ajith Abraham A (2004) An ensemble of neural networks for weather forecasting. Neural Comput Appl 13(2):112–122
11.
Zurück zum Zitat Agirre-Basurko E, Ibarra-Berastegib G, Madariaga I (2006) Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environ Modell Softw 21(4):430–446CrossRef Agirre-Basurko E, Ibarra-Berastegib G, Madariaga I (2006) Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environ Modell Softw 21(4):430–446CrossRef
12.
Zurück zum Zitat Hansen JV, McDonald JB, Nelson RD (1999) Time series prediction with genetic-algorithm designed neural networks: an empirical comparison with modern statistical models. Comput Intell 15:171–184CrossRef Hansen JV, McDonald JB, Nelson RD (1999) Time series prediction with genetic-algorithm designed neural networks: an empirical comparison with modern statistical models. Comput Intell 15:171–184CrossRef
13.
Zurück zum Zitat Small M, Tse CK (2002) Minimum description length neural networks for time series prediction. Phys Rev E 66:066701-1–066701-12CrossRef Small M, Tse CK (2002) Minimum description length neural networks for time series prediction. Phys Rev E 66:066701-1–066701-12CrossRef
14.
Zurück zum Zitat Castillo O, Melin P (2002) Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic and fractal theory. IEEE T Neural Netw 13:1395–1408CrossRef Castillo O, Melin P (2002) Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic and fractal theory. IEEE T Neural Netw 13:1395–1408CrossRef
15.
Zurück zum Zitat Kukkonen J, Partanen L, Karppinen A, Ruuskanen J, Junninen H, Kolehmainen M, Niska H, Dorling S, Chatterton T, Foxall R, Cawley G (2003) Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos Environ 37:4539–4550CrossRef Kukkonen J, Partanen L, Karppinen A, Ruuskanen J, Junninen H, Kolehmainen M, Niska H, Dorling S, Chatterton T, Foxall R, Cawley G (2003) Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos Environ 37:4539–4550CrossRef
16.
Zurück zum Zitat Ordieres JB, Vergara EP, Capuz RS, Salazar RE (2005) Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ Modell Softw 20(5):547–559CrossRef Ordieres JB, Vergara EP, Capuz RS, Salazar RE (2005) Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ Modell Softw 20(5):547–559CrossRef
17.
Zurück zum Zitat Blum E, Li L (1991) Approximation theory and feedforward networks. Neural Netw 4:511–515CrossRef Blum E, Li L (1991) Approximation theory and feedforward networks. Neural Netw 4:511–515CrossRef
18.
Zurück zum Zitat Chester D (1990) Why two hidden layers are better than one. In: Erlbaum L (ed) International Joint Conference on Neural Networks, Proceedings 1, Washington, D.C., pp 265–268 Chester D (1990) Why two hidden layers are better than one. In: Erlbaum L (ed) International Joint Conference on Neural Networks, Proceedings 1, Washington, D.C., pp 265–268
19.
Zurück zum Zitat Hornik K (1991) Approximation capabilities of multi-layer feedforward networks. Neural Netw 4(2):251–257CrossRef Hornik K (1991) Approximation capabilities of multi-layer feedforward networks. Neural Netw 4(2):251–257CrossRef
20.
Zurück zum Zitat Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. In: Mozer M et al (eds.). Advances in neural information processing systems, 9, The MIT Press, Cambridge, pp 155–161 Drucker H, Burges CJC, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. In: Mozer M et al (eds.). Advances in neural information processing systems, 9, The MIT Press, Cambridge, pp 155–161
21.
Zurück zum Zitat Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48:85–105MATHCrossRef Suykens JAK, De Brabanter J, Lukas L, Vandewalle J (2002) Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48:85–105MATHCrossRef
22.
Zurück zum Zitat Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRef
23.
Zurück zum Zitat Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press
24.
Zurück zum Zitat Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, et al (eds) Advances in neural information processing systems 9. The MIT Press, Cambridge, pp 281–287 Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, et al (eds) Advances in neural information processing systems 9. The MIT Press, Cambridge, pp 281–287
25.
Zurück zum Zitat Schölkopf B, Bartlett P, Smola A, Williamson R (1998) Support vector regression with automatic accuracy control. In: Niklasson L et al (eds) Proceedings of the international conference on artificial neural networks, perspectives in neural computing. Springer, Berlin, pp 111–116 Schölkopf B, Bartlett P, Smola A, Williamson R (1998) Support vector regression with automatic accuracy control. In: Niklasson L et al (eds) Proceedings of the international conference on artificial neural networks, perspectives in neural computing. Springer, Berlin, pp 111–116
26.
Zurück zum Zitat Ancona N (1999) Properties of support vector machines for regression. Technical report, Instituto Elaborazione segnali ed immagini, Bari, Italy, pp. 01–99 Ancona N (1999) Properties of support vector machines for regression. Technical report, Instituto Elaborazione segnali ed immagini, Bari, Italy, pp. 01–99
27.
Zurück zum Zitat Müller KR, Smola A, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1999) Using support vector machines for time series prediction. In: Schölkopf B et al (eds) Advances in kernel methods—support vector learning. Proceedings of the NIPS, workshop on support vectors. The MIT Press, Cambridge, pp 1–12 Müller KR, Smola A, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1999) Using support vector machines for time series prediction. In: Schölkopf B et al (eds) Advances in kernel methods—support vector learning. Proceedings of the NIPS, workshop on support vectors. The MIT Press, Cambridge, pp 1–12
28.
Zurück zum Zitat Schölkopf B, Burges CJC, Smola AJ (eds) (1999) Advances in kernel methods—support vector learning, proceedings of the NIPS workshop on support vectors. The MIT Press, Cambridge Schölkopf B, Burges CJC, Smola AJ (eds) (1999) Advances in kernel methods—support vector learning, proceedings of the NIPS workshop on support vectors. The MIT Press, Cambridge
29.
Zurück zum Zitat Van Gestel T, Suykens J, Baestaens D, Lambrechts A, Lanckriet G, Vandaele B, De Moor B, Vandewalle J (2001) Financial time series prediction using least squares support vector machines within the evidence framework. IEEE T Neural Network, Spec Issue Neural Network Financ Eng 12(4):809–821 Van Gestel T, Suykens J, Baestaens D, Lambrechts A, Lanckriet G, Vandaele B, De Moor B, Vandewalle J (2001) Financial time series prediction using least squares support vector machines within the evidence framework. IEEE T Neural Network, Spec Issue Neural Network Financ Eng 12(4):809–821
30.
Zurück zum Zitat Reed RD, Marks RJ (1999) Neural smithing: supervised learning in feedforward artificial neural networks. MIT Press, Cambridge Reed RD, Marks RJ (1999) Neural smithing: supervised learning in feedforward artificial neural networks. MIT Press, Cambridge
31.
Zurück zum Zitat Schölkopf B (1997) Support Vector Learning. PhD Thesis. Oldenbourg R. Verlag, Munich Schölkopf B (1997) Support Vector Learning. PhD Thesis. Oldenbourg R. Verlag, Munich
32.
Zurück zum Zitat Lin H, Lin C (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, department of computer science and information engineering, National Taiwan University Lin H, Lin C (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, department of computer science and information engineering, National Taiwan University
33.
Zurück zum Zitat Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. The MIT Press, CambridgeMATH Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. The MIT Press, CambridgeMATH
34.
Zurück zum Zitat Péczel, G (1979) Climatology (in Hungarian), Tankönyvkiadó, Budapest, pp. 258–284 Péczel, G (1979) Climatology (in Hungarian), Tankönyvkiadó, Budapest, pp. 258–284
35.
Zurück zum Zitat Weigend AS, Gershenfeld NA (eds) (1994) Time series prediction: forecasting the future and understanding the past. Addison–Wesley, Reading, MA Weigend AS, Gershenfeld NA (eds) (1994) Time series prediction: forecasting the future and understanding the past. Addison–Wesley, Reading, MA
36.
Zurück zum Zitat Hammer B, Gersmann K (2003) A note on the universal approximation capability of support vector machines. Neural Process Lett 17:43–53CrossRef Hammer B, Gersmann K (2003) A note on the universal approximation capability of support vector machines. Neural Process Lett 17:43–53CrossRef
37.
Zurück zum Zitat Witten IH, Frank E (2000) Data mining: practical machine learning tools with Java implementations, Morgan Kaufmann, San Francisco Witten IH, Frank E (2000) Data mining: practical machine learning tools with Java implementations, Morgan Kaufmann, San Francisco
39.
Zurück zum Zitat Chang CC, Lin CJ (2002) Training nu-support vector regression: theory and algorithms, Neural Comput 14(8):1959–1977MATHCrossRef Chang CC, Lin CJ (2002) Training nu-support vector regression: theory and algorithms, Neural Comput 14(8):1959–1977MATHCrossRef
41.
Zurück zum Zitat Makra L, Mayer H, Mika J, Sánta T, Holst J (2008) Variations of traffic related air pollution on different time scales in Szeged, Hungary and Freiburg, Germany. Phys Chem Earth (accepted) Makra L, Mayer H, Mika J, Sánta T, Holst J (2008) Variations of traffic related air pollution on different time scales in Szeged, Hungary and Freiburg, Germany. Phys Chem Earth (accepted)
42.
Zurück zum Zitat Shi P, Harrison RM (1997) Regression modelling of hourly NO x and NO2 concentrations in urban air in London. Atmos Environ 31(24):4081–4094CrossRef Shi P, Harrison RM (1997) Regression modelling of hourly NO x and NO2 concentrations in urban air in London. Atmos Environ 31(24):4081–4094CrossRef
Metadaten
Titel
The behaviour of the multi-layer perceptron and the support vector regression learning methods in the prediction of NO and NO2 concentrations in Szeged, Hungary
verfasst von
István Juhos
László Makra
Balázs Tóth
Publikationsdatum
01.02.2009
Verlag
Springer-Verlag
Erschienen in
Neural Computing and Applications / Ausgabe 2/2009
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-007-0171-1

Weitere Artikel der Ausgabe 2/2009

Neural Computing and Applications 2/2009 Zur Ausgabe