Skip to main content
Erschienen in: Measurement Techniques 6/2014

01.09.2014 | Thermal Measurements

The Brightness Temperature of Aluminum Oxide When it is Heated by Concentrated Laser Radiation

verfasst von: V. K. Bityukov, V. A. Petrov

Erschienen in: Measurement Techniques | Ausgabe 6/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of a calculation of the temperature fields in a plane layer of aluminum oxide when it is rapidly heated and melted by the radiation of a CO2-laser with different flux densities are presented. The calculations are carried out using a new mathematical model of nonstationary radiation-conduction heat transfer. It is shown that the brightness temperature, measured at a wavelength of 0.65 μm, differs from the surface temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Transfer, 47, 1159–1174 (2004).CrossRefMATH J. F. Li, L. Li, and F. H. Stott, “Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials,” Int. J. Heat Mass Transfer, 47, 1159–1174 (2004).CrossRefMATH
2.
Zurück zum Zitat J. F. Li, L. Li, and F. H. Stott, “A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials,” ibid., 5523–5539. J. F. Li, L. Li, and F. H. Stott, “A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials,” ibid., 5523–5539.
3.
Zurück zum Zitat J. F. Li, L. Li, and F. H. Stott, “Predictions of flow velocity and velocity boundary layer thickness at the surface during laser melting of ceramic materials,” J. Phys. D: Appl. Phys., 37, 1710–1717 (2004).CrossRefADS J. F. Li, L. Li, and F. H. Stott, “Predictions of flow velocity and velocity boundary layer thickness at the surface during laser melting of ceramic materials,” J. Phys. D: Appl. Phys., 37, 1710–1717 (2004).CrossRefADS
4.
Zurück zum Zitat V. A. Petrov and N. V. Marchenko, Energy Transfer in Partially Transparent Solid Materials, Nauka, Moscow (1985). V. A. Petrov and N. V. Marchenko, Energy Transfer in Partially Transparent Solid Materials, Nauka, Moscow (1985).
5.
Zurück zum Zitat S. H. Chen, D. H. Cho, and G. Kocamustafaogullary, “Melting and solidification with internal radiative transfer – A generalized phase change model,” Int. J. Heat Mass Transfer, 26, 621–633 (1983).CrossRef S. H. Chen, D. H. Cho, and G. Kocamustafaogullary, “Melting and solidification with internal radiative transfer – A generalized phase change model,” Int. J. Heat Mass Transfer, 26, 621–633 (1983).CrossRef
6.
Zurück zum Zitat N. A. Rubtsov, A. M. Timofeev, and N. A. Savinova, Combined Heat Exchange in Semitransparent Media, Izd. SO RAN, Novosibirsk (2003). N. A. Rubtsov, A. M. Timofeev, and N. A. Savinova, Combined Heat Exchange in Semitransparent Media, Izd. SO RAN, Novosibirsk (2003).
7.
Zurück zum Zitat V. A. Petrov, V. E. Titov, and A. Yu. Vorobyev, “Numerical simulation of concentrated laser radiation heating of refractory oxides,” High Temp. – High Press., 31, 267–274 (1999).CrossRef V. A. Petrov, V. E. Titov, and A. Yu. Vorobyev, “Numerical simulation of concentrated laser radiation heating of refractory oxides,” High Temp. – High Press., 31, 267–274 (1999).CrossRef
8.
Zurück zum Zitat V. K. Bityukov, V. A. Petrov, and I. V. Smirnov, “The effect of flux density on the formation of a temperature field in aluminum oxide when it is heated with concentrated laser radiation,” Teplofiz. Vys. Temp., 47, No. 4, 589–596 (2009). V. K. Bityukov, V. A. Petrov, and I. V. Smirnov, “The effect of flux density on the formation of a temperature field in aluminum oxide when it is heated with concentrated laser radiation,” Teplofiz. Vys. Temp., 47, No. 4, 589–596 (2009).
9.
Zurück zum Zitat Yu. K. Lingart, V. A. Petrov, and N. A. Tikhonova, “Optical properties of leucosapphire at high temperatures. I. The semitransparency region,” Teplofiz. Vys. Temp., 20, No. 5, 872–880 (1982). Yu. K. Lingart, V. A. Petrov, and N. A. Tikhonova, “Optical properties of leucosapphire at high temperatures. I. The semitransparency region,” Teplofiz. Vys. Temp., 20, No. 5, 872–880 (1982).
10.
Zurück zum Zitat Yu. K. Lingart, V. A. Petrov, and N. A. Tikhonova, “Optical properties of leucosapphire at high temperatures. II. The properties of a single crystal in the nontransparency region and the properties of the melt,” Teplofiz. Vys. Temp., 20, No. 6, 1085–1092 (1982). Yu. K. Lingart, V. A. Petrov, and N. A. Tikhonova, “Optical properties of leucosapphire at high temperatures. II. The properties of a single crystal in the nontransparency region and the properties of the melt,” Teplofiz. Vys. Temp., 20, No. 6, 1085–1092 (1982).
11.
Zurück zum Zitat V. A. Petrov. “Abrupt increase of the absorption coefficient of alumina at melting by laser radiation and its decrease at solidification,” Int. J. Thermophys., 30, 1938–1959 (2009).CrossRefADS V. A. Petrov. “Abrupt increase of the absorption coefficient of alumina at melting by laser radiation and its decrease at solidification,” Int. J. Thermophys., 30, 1938–1959 (2009).CrossRefADS
12.
Zurück zum Zitat V. K. Bityukov and V. A. Petrov, “Absorption coefficient of molten aluminum oxide in semitransparent spectral range,” Appl. Phys. Res., 5, No. 1, 51–71 (2013).CrossRef V. K. Bityukov and V. A. Petrov, “Absorption coefficient of molten aluminum oxide in semitransparent spectral range,” Appl. Phys. Res., 5, No. 1, 51–71 (2013).CrossRef
Metadaten
Titel
The Brightness Temperature of Aluminum Oxide When it is Heated by Concentrated Laser Radiation
verfasst von
V. K. Bityukov
V. A. Petrov
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 6/2014
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-014-0515-z

Weitere Artikel der Ausgabe 6/2014

Measurement Techniques 6/2014 Zur Ausgabe