Skip to main content
Erschienen in: Journal of Electronic Materials 10/2022

23.07.2022 | Original Research Article

The BS Nanotubes with High Carrier Mobility for Potential Photocatalytic Hydrolysis Applications: First-Principles Study

verfasst von: Chen Zhao, Lijian Li, Long Zhang, Yingtao Zhu

Erschienen in: Journal of Electronic Materials | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To explore the photocatalytic properties of BS, we have investigated the geometry, electronic structure, and carrier mobility of BS monolayer and single-walled nanotubes (SWNTs) using a first-principles study. The B-S and B-B bond lengths of SWNTs remain stable compared to the monolayer, and the strain energy and formation energy decrease with the increase of the diameter of the nanotube. The band gap of nanotubes is significantly reduced compared to that of the monolayer, and the transition from indirect to direct band gap occurs between monolayer to nanotubes which promotes rapid carrier migration while reducing electron-hole recombination. The band gap edge position of larger diameter BS nanotubes satisfies the photocatalytic hydrolysis redox potential. Notably, the electron mobility of the (60, 0) nanotube is 97.22 cm2 V−1 s−1 while the hole mobility of the nanotube is as high as 4684.61 cm2 V−1 s−1. The large value difference in carrier mobility could reduce the recombination of electrons and holes. Combined with the above calculations, we believe that the BS nanotubes have good photocatalytic performance and these BS nanotubes in photocatalytic hydrolysis should be very promising.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Bahnemann, Photocatalytic Water Treatment: Solar Energy Applications. Sol. Energy 77, 445 (2004).CrossRef D. Bahnemann, Photocatalytic Water Treatment: Solar Energy Applications. Sol. Energy 77, 445 (2004).CrossRef
2.
Zurück zum Zitat S.S. Naik, S.J. Lee, S. Yeon, Y. Yu, and M.Y. Choi, Pulsed Laser-Assisted Synthesis of Metal and Nonmetal-Codoped ZnO for Efficient Photocatalytic Degradation of Rhodamine B Under Solar Light Irradiation. Chemosphere 274, 129782 (2021).CrossRef S.S. Naik, S.J. Lee, S. Yeon, Y. Yu, and M.Y. Choi, Pulsed Laser-Assisted Synthesis of Metal and Nonmetal-Codoped ZnO for Efficient Photocatalytic Degradation of Rhodamine B Under Solar Light Irradiation. Chemosphere 274, 129782 (2021).CrossRef
3.
Zurück zum Zitat E.J.S. Christy, A. Amalraj, A. Rajeswari, and A. Pius, Enhanced Photocatalytic Performance of Zr(IV) Doped ZnO Nanocomposite for the Degradation Efficiency of Different Azo Dyes. Environ. Chem. Ecotoxicol. 3, 31 (2021).CrossRef E.J.S. Christy, A. Amalraj, A. Rajeswari, and A. Pius, Enhanced Photocatalytic Performance of Zr(IV) Doped ZnO Nanocomposite for the Degradation Efficiency of Different Azo Dyes. Environ. Chem. Ecotoxicol. 3, 31 (2021).CrossRef
4.
Zurück zum Zitat C.-Z. Jin, Y. Yang, X.-A. Yang, S.-B. Wang, and W.-B. Zhang, Visible Photocatalysis of Cr(VI) at g/L Level in Si/N-TiO2 Nanocrystals Synthesized by One-Step Co-Hydrolysis Method. Chem. Eng. J. 398, 125641 (2020).CrossRef C.-Z. Jin, Y. Yang, X.-A. Yang, S.-B. Wang, and W.-B. Zhang, Visible Photocatalysis of Cr(VI) at g/L Level in Si/N-TiO2 Nanocrystals Synthesized by One-Step Co-Hydrolysis Method. Chem. Eng. J. 398, 125641 (2020).CrossRef
5.
Zurück zum Zitat X. Lu, G. Wang, S. Xie, J. Shi, W. Li, Y. Tong, and Y. Li, Efficient Photocatalytic Hydrogen Evolution Over Hydrogenated ZnO Nanorod Arrays. Chem. Commun. (Camb) 48, 7717 (2012).CrossRef X. Lu, G. Wang, S. Xie, J. Shi, W. Li, Y. Tong, and Y. Li, Efficient Photocatalytic Hydrogen Evolution Over Hydrogenated ZnO Nanorod Arrays. Chem. Commun. (Camb) 48, 7717 (2012).CrossRef
6.
Zurück zum Zitat W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, and L.C. Sim, An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. Int. 27, 2522 (2020).CrossRef W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, and L.C. Sim, An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. Int. 27, 2522 (2020).CrossRef
7.
Zurück zum Zitat Q. Wang, Z. Xu, Y. Cao, Y. Chen, X. Du, Y. Yang, and Z. Wang, Two-Dimensional Ultrathin Perforated Co3O4 Nanosheets Enhanced PMS-Activated Selective Oxidation of Organic Micropollutants in Environmental Remediation. Chem. Eng. J. 427, 131953 (2022).CrossRef Q. Wang, Z. Xu, Y. Cao, Y. Chen, X. Du, Y. Yang, and Z. Wang, Two-Dimensional Ultrathin Perforated Co3O4 Nanosheets Enhanced PMS-Activated Selective Oxidation of Organic Micropollutants in Environmental Remediation. Chem. Eng. J. 427, 131953 (2022).CrossRef
8.
Zurück zum Zitat M. Yu, J. Wang, L. Tang, C. Feng, H. Liu, H. Zhang, B. Peng, Z. Chen, and Q. Xie, Intimate Coupling of Photocatalysis and Biodegradation for Wastewater Treatment: Mechanisms, Recent Advances and Environmental Applications. Water Res. 175, 115673 (2020).CrossRef M. Yu, J. Wang, L. Tang, C. Feng, H. Liu, H. Zhang, B. Peng, Z. Chen, and Q. Xie, Intimate Coupling of Photocatalysis and Biodegradation for Wastewater Treatment: Mechanisms, Recent Advances and Environmental Applications. Water Res. 175, 115673 (2020).CrossRef
9.
Zurück zum Zitat A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37 (1972).CrossRef A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37 (1972).CrossRef
10.
Zurück zum Zitat K.M. Emran, Catalytic Activity of Strontium Modified TiO2 Nanotubes for Hydrogen Evolution Reaction. Int. J. Electrochem. Sci. 15, 4218 (2020).CrossRef K.M. Emran, Catalytic Activity of Strontium Modified TiO2 Nanotubes for Hydrogen Evolution Reaction. Int. J. Electrochem. Sci. 15, 4218 (2020).CrossRef
11.
Zurück zum Zitat X. Zhang, C. Jia, and J. Liu, Guanidine Carbonate Assisted Supramolecular Self-Assembly for Synthesizing Porous g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 46, 19939 (2021).CrossRef X. Zhang, C. Jia, and J. Liu, Guanidine Carbonate Assisted Supramolecular Self-Assembly for Synthesizing Porous g-C3N4 for Enhanced Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 46, 19939 (2021).CrossRef
12.
Zurück zum Zitat X. Liu, Y. Guo, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, H. Cheng, Y. Dai, and B. Huang, The Synergy of Thermal Exfoliation and Phosphorus Doping in g-C3N4 for Improved Photocatalytic H2 Generation. Int. J. Hydrogen Energy 46, 3595 (2021).CrossRef X. Liu, Y. Guo, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, H. Cheng, Y. Dai, and B. Huang, The Synergy of Thermal Exfoliation and Phosphorus Doping in g-C3N4 for Improved Photocatalytic H2 Generation. Int. J. Hydrogen Energy 46, 3595 (2021).CrossRef
13.
Zurück zum Zitat A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, S. Winters, N.C. Berner, D. McCloskey, J.F. Donegan, G.S. Duesberg, V. Nicolosi, and J.N. Coleman, Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application as Hydrogen Evolution Catalysts. Chem. Mater. 27, 3483 (2015).CrossRef A. Harvey, C. Backes, Z. Gholamvand, D. Hanlon, D. McAteer, H.C. Nerl, E. McGuire, A. Seral-Ascaso, Q.M. Ramasse, N. McEvoy, S. Winters, N.C. Berner, D. McCloskey, J.F. Donegan, G.S. Duesberg, V. Nicolosi, and J.N. Coleman, Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application as Hydrogen Evolution Catalysts. Chem. Mater. 27, 3483 (2015).CrossRef
14.
Zurück zum Zitat S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and Electronic Properties of Monolayer Group III Monochalcogenides. Phys. Rev. B 95, 115409 (2017).CrossRef S. Demirci, N. Avazlı, E. Durgun, and S. Cahangirov, Structural and Electronic Properties of Monolayer Group III Monochalcogenides. Phys. Rev. B 95, 115409 (2017).CrossRef
15.
Zurück zum Zitat W. Jie, X. Chen, D. Li, L. Xie, Y.Y. Hui, S.P. Lau, X. Cui, and J. Hao, Layer-Dependent Nonlinear Optical Properties and Stability of Non-Centrosymmetric Modification in Few-Layer GaSe Sheets. Angew. Chem. Int. Ed. Engl. 54, 1185 (2015).CrossRef W. Jie, X. Chen, D. Li, L. Xie, Y.Y. Hui, S.P. Lau, X. Cui, and J. Hao, Layer-Dependent Nonlinear Optical Properties and Stability of Non-Centrosymmetric Modification in Few-Layer GaSe Sheets. Angew. Chem. Int. Ed. Engl. 54, 1185 (2015).CrossRef
16.
Zurück zum Zitat M.M. Obeid, A. Bafekry, S. Ur Rehman, and C.V. Nguyen, A Type-II GaSe/HfS2 van der Waals Heterostructure as Promising Photocatalyst with High Carrier Mobility. Appl. Surf. Sci. 534, 147607 (2020).CrossRef M.M. Obeid, A. Bafekry, S. Ur Rehman, and C.V. Nguyen, A Type-II GaSe/HfS2 van der Waals Heterostructure as Promising Photocatalyst with High Carrier Mobility. Appl. Surf. Sci. 534, 147607 (2020).CrossRef
17.
Zurück zum Zitat Z. Wang, M. Safdar, M. Mirza, K. Xu, Q. Wang, Y. Huang, F. Wang, X. Zhan, and J. He, High-Performance Flexible Photodetectors Based on GaTe Nanosheets. Nanoscale 7, 7252 (2015).CrossRef Z. Wang, M. Safdar, M. Mirza, K. Xu, Q. Wang, Y. Huang, F. Wang, X. Zhan, and J. He, High-Performance Flexible Photodetectors Based on GaTe Nanosheets. Nanoscale 7, 7252 (2015).CrossRef
18.
Zurück zum Zitat W. Feng, X. Zhou, W.Q. Tian, W. Zheng, and P. Hu, Performance Improvement of Multilayer InSe Transistors with Optimized Metal Contacts. Phys. Chem. Chem. Phys. 17, 3653 (2015).CrossRef W. Feng, X. Zhou, W.Q. Tian, W. Zheng, and P. Hu, Performance Improvement of Multilayer InSe Transistors with Optimized Metal Contacts. Phys. Chem. Chem. Phys. 17, 3653 (2015).CrossRef
19.
Zurück zum Zitat L. Li, C. Zhao, L. Zhang, and Y. Zhu, γ-GeSe Nanotube: A One-Dimensional Semiconductor with High Carrier Mobility Potential for Photocatalytic Water Splitting. J. Mater. Chem. C 9, 15158 (2021).CrossRef L. Li, C. Zhao, L. Zhang, and Y. Zhu, γ-GeSe Nanotube: A One-Dimensional Semiconductor with High Carrier Mobility Potential for Photocatalytic Water Splitting. J. Mater. Chem. C 9, 15158 (2021).CrossRef
20.
Zurück zum Zitat Q. Lei, S. Yang, D. Ding, J. Tan, J. Liu, and R. Chen, Local-Interaction-Field-Coupled Semiconductor Photocatalysis: Recent Progress and Future Challenges. J. Mater. Chem. A 9, 2491 (2021).CrossRef Q. Lei, S. Yang, D. Ding, J. Tan, J. Liu, and R. Chen, Local-Interaction-Field-Coupled Semiconductor Photocatalysis: Recent Progress and Future Challenges. J. Mater. Chem. A 9, 2491 (2021).CrossRef
21.
Zurück zum Zitat Z. Ma, W. Liu, W. Yang, W. Li, and B. Han, Temperature Effects on Redox Potentials and Implications to Semiconductor Photocatalysis. Fuel 286, 119490 (2021).CrossRef Z. Ma, W. Liu, W. Yang, W. Li, and B. Han, Temperature Effects on Redox Potentials and Implications to Semiconductor Photocatalysis. Fuel 286, 119490 (2021).CrossRef
22.
Zurück zum Zitat L. Li, C. Zhao, L. Zhang, and Y. Zhu, γ-GeSe Nanotubes: A One-Dimensional Semiconductor with High Carrier Mobility Potential for Photocatalytic Water Splitting. J. Mater. Chem. C 9, 15158 (2021).CrossRef L. Li, C. Zhao, L. Zhang, and Y. Zhu, γ-GeSe Nanotubes: A One-Dimensional Semiconductor with High Carrier Mobility Potential for Photocatalytic Water Splitting. J. Mater. Chem. C 9, 15158 (2021).CrossRef
23.
Zurück zum Zitat P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, X. Zhao, and D. Astruc, Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visible-Light Driven Photocatalytic Activity. J. Photochem. Photobiol. A 388, 112169 (2020).CrossRef P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, X. Zhao, and D. Astruc, Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visible-Light Driven Photocatalytic Activity. J. Photochem. Photobiol. A 388, 112169 (2020).CrossRef
24.
Zurück zum Zitat X. Pang, N. Skillen, N. Gunaratne, D.W. Rooney, and P.K.J. Robertson, Removal of Phthalates from Aqueous Solution by Semiconductor Photocatalysis: A Review. J. Hazard. Mater. 402, 123461 (2021).CrossRef X. Pang, N. Skillen, N. Gunaratne, D.W. Rooney, and P.K.J. Robertson, Removal of Phthalates from Aqueous Solution by Semiconductor Photocatalysis: A Review. J. Hazard. Mater. 402, 123461 (2021).CrossRef
25.
Zurück zum Zitat S.-J. Young, and Y.-L. Chu, Characteristics of Field Emitters on the Basis of Pd-Adsorbed ZnO Nanostructures by Photochemical Method. ACS Appl. Nano Mater. 4, 2515 (2021).CrossRef S.-J. Young, and Y.-L. Chu, Characteristics of Field Emitters on the Basis of Pd-Adsorbed ZnO Nanostructures by Photochemical Method. ACS Appl. Nano Mater. 4, 2515 (2021).CrossRef
26.
Zurück zum Zitat T.V.H. Luu, M.D. Luu, N.N. Dao, V.T. Le, H.T. Nguyen, and V.D. Doan, Immobilization of C/Ce-Codoped ZnO Nanoparticles on Multi-Walled Carbon Nanotubes for Enhancing Their Photocatalytic Activity. J. Dispers. Sci. Technol. 42, 1311 (2021).CrossRef T.V.H. Luu, M.D. Luu, N.N. Dao, V.T. Le, H.T. Nguyen, and V.D. Doan, Immobilization of C/Ce-Codoped ZnO Nanoparticles on Multi-Walled Carbon Nanotubes for Enhancing Their Photocatalytic Activity. J. Dispers. Sci. Technol. 42, 1311 (2021).CrossRef
27.
Zurück zum Zitat R. Gang, L. Xu, Y. Xia, J. Cai, L. Zhang, S. Wang, and R. Li, Fabrication of MoS2 QDs/ZnO Nanosheet 0D/2D Heterojunction Photocatalysts for Organic Dyes and Gaseous Heavy Metal Removal. J. Colloid Interface Sci. 579, 853 (2020).CrossRef R. Gang, L. Xu, Y. Xia, J. Cai, L. Zhang, S. Wang, and R. Li, Fabrication of MoS2 QDs/ZnO Nanosheet 0D/2D Heterojunction Photocatalysts for Organic Dyes and Gaseous Heavy Metal Removal. J. Colloid Interface Sci. 579, 853 (2020).CrossRef
28.
Zurück zum Zitat S. Piskunov, O. Lisovski, Y.F. Zhukovskii, P.N. D’Yachkov, R.A. Evarestov, S. Kenmoe, and E. Spohr, First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts. ACS Omega 4, 1434 (2019).CrossRef S. Piskunov, O. Lisovski, Y.F. Zhukovskii, P.N. D’Yachkov, R.A. Evarestov, S. Kenmoe, and E. Spohr, First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts. ACS Omega 4, 1434 (2019).CrossRef
29.
Zurück zum Zitat Y. Zhao, X. Li, H. Li, and L. He, Modulation of the Electronic Properties and Photocatalytic Performance of Black Phase Monolayer GeSe by Noble Metal Doping. New J. Chem. 45, 15378 (2021).CrossRef Y. Zhao, X. Li, H. Li, and L. He, Modulation of the Electronic Properties and Photocatalytic Performance of Black Phase Monolayer GeSe by Noble Metal Doping. New J. Chem. 45, 15378 (2021).CrossRef
30.
Zurück zum Zitat K. Ren, Y. Luo, S. Wang, J.P. Chou, J. Yu, W. Tang, and M. Sun, A van der Waals Heterostructure Based on Graphene-like Gallium Nitride and Boron Selenide: A High-Efficiency Photocatalyst for Water Splitting. ACS Omega 4, 21689 (2019).CrossRef K. Ren, Y. Luo, S. Wang, J.P. Chou, J. Yu, W. Tang, and M. Sun, A van der Waals Heterostructure Based on Graphene-like Gallium Nitride and Boron Selenide: A High-Efficiency Photocatalyst for Water Splitting. ACS Omega 4, 21689 (2019).CrossRef
31.
Zurück zum Zitat Y. Zhang, Y. Zhao, Z. Xiong, T. Gao, B. Gong, P. Liu, J. Liu, and J. Zhang, Elemental Mercury Removal by I-Doped Bi2WO6 with Remarkable Visible-Light-Driven Photocatalytic Oxidation. Appl. Catal. B 282, 119534 (2021).CrossRef Y. Zhang, Y. Zhao, Z. Xiong, T. Gao, B. Gong, P. Liu, J. Liu, and J. Zhang, Elemental Mercury Removal by I-Doped Bi2WO6 with Remarkable Visible-Light-Driven Photocatalytic Oxidation. Appl. Catal. B 282, 119534 (2021).CrossRef
32.
Zurück zum Zitat M. Zhang, X. Chen, X. Jiang, J. Wang, L. Xu, J. Qiu, W. Lu, D. Chen, and Z. Li, Activate Fe3S4 Nanorods by Ni Doping for Efficient Dye-Sensitized Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 13, 14198 (2021).CrossRef M. Zhang, X. Chen, X. Jiang, J. Wang, L. Xu, J. Qiu, W. Lu, D. Chen, and Z. Li, Activate Fe3S4 Nanorods by Ni Doping for Efficient Dye-Sensitized Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 13, 14198 (2021).CrossRef
33.
Zurück zum Zitat H. Yang, A Short Review on Heterojunction Photocatalysts: Carrier Transfer Behavior and Photocatalytic Mechanisms. Mater. Res. Bull. 142, 111406 (2021).CrossRef H. Yang, A Short Review on Heterojunction Photocatalysts: Carrier Transfer Behavior and Photocatalytic Mechanisms. Mater. Res. Bull. 142, 111406 (2021).CrossRef
34.
Zurück zum Zitat Z. Ren, X. Li, L. Guo, J. Wu, Y. Li, W. Liu, P. Li, Y. Fu, and J. Ma, Facile Synthesis of ZnO/ZnS Heterojunction Nanoarrays for Enhanced Piezo-Photocatalytic Performance. Mater. Lett. 292, 129635 (2021).CrossRef Z. Ren, X. Li, L. Guo, J. Wu, Y. Li, W. Liu, P. Li, Y. Fu, and J. Ma, Facile Synthesis of ZnO/ZnS Heterojunction Nanoarrays for Enhanced Piezo-Photocatalytic Performance. Mater. Lett. 292, 129635 (2021).CrossRef
35.
Zurück zum Zitat Y. Zhu, L. Zhang, L. Li, C. Zhao, J. Li, and J. Zhang, Explaining Improved Photocatalytic Activity of Double-Walled TiO2 Nanotube: A Hybrid Density Functional Calculation. Appl. Surf. Sci. 570, 151021 (2021).CrossRef Y. Zhu, L. Zhang, L. Li, C. Zhao, J. Li, and J. Zhang, Explaining Improved Photocatalytic Activity of Double-Walled TiO2 Nanotube: A Hybrid Density Functional Calculation. Appl. Surf. Sci. 570, 151021 (2021).CrossRef
36.
Zurück zum Zitat L. Ju, J. Qin, L. Shi, G. Yang, J. Zhang, and L. Sun, Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance. Nanomaterials (Basel) 11, 705 (2021).CrossRef L. Ju, J. Qin, L. Shi, G. Yang, J. Zhang, and L. Sun, Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance. Nanomaterials (Basel) 11, 705 (2021).CrossRef
37.
Zurück zum Zitat H. Li, H. Zhang, Y. Xiong, L. Ye, and W. Li, Van der Waals Heterostructures Based on SiC-BS: A Promoted Photocatalytic Properties for Water Splitting. Phys. Lett. A 410, 127514 (2021).CrossRef H. Li, H. Zhang, Y. Xiong, L. Ye, and W. Li, Van der Waals Heterostructures Based on SiC-BS: A Promoted Photocatalytic Properties for Water Splitting. Phys. Lett. A 410, 127514 (2021).CrossRef
38.
Zurück zum Zitat R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, CRYSTAL14: A Program for the ab initio Investigation of Crystalline Solids. Int. J. Quantum Chem. 114, 1287 (2014).CrossRef R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, CRYSTAL14: A Program for the ab initio Investigation of Crystalline Solids. Int. J. Quantum Chem. 114, 1287 (2014).CrossRef
39.
Zurück zum Zitat H.J. Monkhorst, and J.D. Pack, Special Points for Brillouin-Zone Integrations. Phys. Rev. B 13, 5188 (1976).CrossRef H.J. Monkhorst, and J.D. Pack, Special Points for Brillouin-Zone Integrations. Phys. Rev. B 13, 5188 (1976).CrossRef
40.
Zurück zum Zitat D. Vilela Oliveira, J. Laun, M.F. Peintinger, and T. Bredow, BSSE-Correction Scheme for Consistent Gaussian Basis Sets of Double- and Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. J. Comput. Chem. 40, 2364 (2019).CrossRef D. Vilela Oliveira, J. Laun, M.F. Peintinger, and T. Bredow, BSSE-Correction Scheme for Consistent Gaussian Basis Sets of Double- and Triple-Zeta Valence with Polarization Quality for Solid-State Calculations. J. Comput. Chem. 40, 2364 (2019).CrossRef
41.
Zurück zum Zitat K. Ren, J. Yu, and W. Tang, Two-Dimensional ZnO/BSe van der Waals Heterostructure used as a Promising Photocatalyst for Water Splitting: A DFT Study. J. Alloys Compd. 812, 152049 (2020).CrossRef K. Ren, J. Yu, and W. Tang, Two-Dimensional ZnO/BSe van der Waals Heterostructure used as a Promising Photocatalyst for Water Splitting: A DFT Study. J. Alloys Compd. 812, 152049 (2020).CrossRef
42.
Zurück zum Zitat H. Li, L. Ye, Y. Xiong, H. Zhang, S. Zhou, and W. Li, Tunable Electronic Properties of BSe-MoS2/WS2 Heterostructures for Promoted Light Utilization. Phys. Chem. Chem. Phys. 23, 10081 (2021).CrossRef H. Li, L. Ye, Y. Xiong, H. Zhang, S. Zhou, and W. Li, Tunable Electronic Properties of BSe-MoS2/WS2 Heterostructures for Promoted Light Utilization. Phys. Chem. Chem. Phys. 23, 10081 (2021).CrossRef
43.
Zurück zum Zitat M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis, Solar Water Splitting Cells. Chem. Rev. 110, 6446 (2010).CrossRef M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis, Solar Water Splitting Cells. Chem. Rev. 110, 6446 (2010).CrossRef
44.
Zurück zum Zitat X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-Dimensional Germanium Monochalcogenides for Photocatalytic Water Splitting with High Carrier Mobility. Appl. Catal. B 217, 275 (2017).CrossRef X. Lv, W. Wei, Q. Sun, F. Li, B. Huang, and Y. Dai, Two-Dimensional Germanium Monochalcogenides for Photocatalytic Water Splitting with High Carrier Mobility. Appl. Catal. B 217, 275 (2017).CrossRef
45.
Zurück zum Zitat Y. Cai, G. Zhang, and Y.W. Zhang, Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 136, 6269 (2014).CrossRef Y. Cai, G. Zhang, and Y.W. Zhang, Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons. J. Am. Chem. Soc. 136, 6269 (2014).CrossRef
Metadaten
Titel
The BS Nanotubes with High Carrier Mobility for Potential Photocatalytic Hydrolysis Applications: First-Principles Study
verfasst von
Chen Zhao
Lijian Li
Long Zhang
Yingtao Zhu
Publikationsdatum
23.07.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 10/2022
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09794-2

Weitere Artikel der Ausgabe 10/2022

Journal of Electronic Materials 10/2022 Zur Ausgabe