Skip to main content
Erschienen in: Shape Memory and Superelasticity 4/2022

30.09.2022 | Technical Article

The Build Orientation Dependency of NiTi Shape Memory Alloy Processed by Laser Powder Bed Fusion

verfasst von: Keyvan Safaei, Nasrin Taheri Andani, Mohammadreza Nematollahi, Othmane Benafan, Behrang Poorganji, Mohammad Elahinia

Erschienen in: Shape Memory and Superelasticity | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigated the orientation dependency effect on the thermomechanical behavior of NiTi shape memory alloys fabricated by laser powder bed fusion (LPBF). The LPBF method, with high flexibility of process control, has shown great potential in making dense components with enhanced thermomechanical properties through in situ microstructure control. In this study, the LPBF method was employed to alter the crystallographic texture of a NiTi shape memory alloy by manipulating the build orientation. The microstructural and phase analyses showed the alteration of NiTi texture from < 001 > preferred orientation to < 011 > direction via changing the build orientation. The test specimens were then mechanically tested under tension, compression, and torsion, while relating back to the observed textures. Comparing the theoretical transformation strains calculated from the lattice deformation theory with the recovery strains obtained from the experiments, the experimental data show a similar trend, but with lower recovery strain magnitudes. In addition to the polycrystalline aggregate, the presence of defects, slip, and retained martensite phases plays key roles in this discrepancy between experiments and theory. The transformation strains showed the highest orientation dependency in tension as compared with compression, whereas this effect was less significant in torsion.
Literatur
2.
Zurück zum Zitat Mehrabi R, Andani MT, Elahinia M, Kadkhodaei M (2014) Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling. Mech Mater 77:110–124CrossRef Mehrabi R, Andani MT, Elahinia M, Kadkhodaei M (2014) Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling. Mech Mater 77:110–124CrossRef
3.
Zurück zum Zitat Dadbakhsh S, Vrancken B, Kruth J-P, Luyten J, Van Humbeeck J (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225–232CrossRef Dadbakhsh S, Vrancken B, Kruth J-P, Luyten J, Van Humbeeck J (2016) Texture and anisotropy in selective laser melting of NiTi alloy. Mater Sci Eng A 650:225–232CrossRef
4.
Zurück zum Zitat Qiu S, Clausen B, Ii SAP, Noebe RD, Vaidyanathan R (2011) On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi. Acta Mater 59:5055–5066CrossRef Qiu S, Clausen B, Ii SAP, Noebe RD, Vaidyanathan R (2011) On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi. Acta Mater 59:5055–5066CrossRef
5.
Zurück zum Zitat Šittner P, Novak V (2000) Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int J Plast 16:1243–1268CrossRef Šittner P, Novak V (2000) Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int J Plast 16:1243–1268CrossRef
6.
Zurück zum Zitat Liu Y (2015) The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater 95:411–427CrossRef Liu Y (2015) The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater 95:411–427CrossRef
7.
Zurück zum Zitat Liu Y, Xie Z, Van Humbeeck J, Delaey L (1998) Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Mater 46:4325–4338CrossRef Liu Y, Xie Z, Van Humbeeck J, Delaey L (1998) Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Mater 46:4325–4338CrossRef
9.
Zurück zum Zitat Somerday M, Comstock RJ Jr, Wert JA (1997) A systematic analysis of transformation stress anisotropy in shape memory alloys. Philos Mag A 75:1193–1207CrossRef Somerday M, Comstock RJ Jr, Wert JA (1997) A systematic analysis of transformation stress anisotropy in shape memory alloys. Philos Mag A 75:1193–1207CrossRef
10.
Zurück zum Zitat Y. Liu, Detwinning process and its anisotropy in shape memory alloys, in: Smart Mater., SPIE, 2001, pp. 82–93. Y. Liu, Detwinning process and its anisotropy in shape memory alloys, in: Smart Mater., SPIE, 2001, pp. 82–93.
11.
Zurück zum Zitat Safaei K, Abedi H, Nematollahi M, Kordizadeh F, Dabbaghi H, Bayati P, Javanbakht R, Jahadakbar A, Elahinia M, Poorganji B (2021) Additive manufacturing of NiTi shape memory alloy for biomedical applications: review of the lpbf process ecosystem. JOM 1:1–16 Safaei K, Abedi H, Nematollahi M, Kordizadeh F, Dabbaghi H, Bayati P, Javanbakht R, Jahadakbar A, Elahinia M, Poorganji B (2021) Additive manufacturing of NiTi shape memory alloy for biomedical applications: review of the lpbf process ecosystem. JOM 1:1–16
13.
Zurück zum Zitat Nematollahi M, Baghbaderani KS, Amerinatanzi A, Zamanian H, Elahinia M (2019) Application of NiTi in assistive and rehabilitation devices: a review. Bioengineering 6:37CrossRef Nematollahi M, Baghbaderani KS, Amerinatanzi A, Zamanian H, Elahinia M (2019) Application of NiTi in assistive and rehabilitation devices: a review. Bioengineering 6:37CrossRef
15.
Zurück zum Zitat T.L. Turner, R.T. Kidd, D.J. Hartl, W.D. Scholten, Development of a SMA-based, slat-cove filler for reduction of aeroacoustic noise associated with transport-class aircraft wings. In: Smart Mater. Adaptive Structural Intelligence System, American Society of Mechanical Engineers, 2013, p. V002T02A005. T.L. Turner, R.T. Kidd, D.J. Hartl, W.D. Scholten, Development of a SMA-based, slat-cove filler for reduction of aeroacoustic noise associated with transport-class aircraft wings. In: Smart Mater. Adaptive Structural Intelligence System, American Society of Mechanical Engineers, 2013, p. V002T02A005.
16.
Zurück zum Zitat Costanza G, Tata ME (2020) Shape memory alloys for aerospace, recent developments, and new applications: a short review. Materials (Basel) 13:1856CrossRef Costanza G, Tata ME (2020) Shape memory alloys for aerospace, recent developments, and new applications: a short review. Materials (Basel) 13:1856CrossRef
17.
Zurück zum Zitat Basaeri H, Zakerzadeh MR, Yousefi-Koma A, Mohtasebi SS (2015) Design and aerodynamic analysis of a morphing wing with shape memory alloy actuator. Modares Mech. Eng. 15:1 Basaeri H, Zakerzadeh MR, Yousefi-Koma A, Mohtasebi SS (2015) Design and aerodynamic analysis of a morphing wing with shape memory alloy actuator. Modares Mech. Eng. 15:1
18.
Zurück zum Zitat DesRoches R, Delemont M (2002) Seismic retrofit of simply supported bridges using shape memory alloys. Eng Struct 24:325–332CrossRef DesRoches R, Delemont M (2002) Seismic retrofit of simply supported bridges using shape memory alloys. Eng Struct 24:325–332CrossRef
19.
Zurück zum Zitat D. Fugazza, Shape-memory alloy devices in earthquake engineering: mechanical properties, constitutive modelling and numerical simulations, Master’s Thesis, University of Pavia, Pavia, Italy (2003). D. Fugazza, Shape-memory alloy devices in earthquake engineering: mechanical properties, constitutive modelling and numerical simulations, Master’s Thesis, University of Pavia, Pavia, Italy (2003).
20.
Zurück zum Zitat Mirzaeifar R, DesRoches R, Yavari A (2011) A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int J Solids Struct 48:611–624CrossRef Mirzaeifar R, DesRoches R, Yavari A (2011) A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs. Int J Solids Struct 48:611–624CrossRef
21.
Zurück zum Zitat Butera F (2008) Shape memory actuators. Adv Mater Process 166:37–40 Butera F (2008) Shape memory actuators. Adv Mater Process 166:37–40
22.
Zurück zum Zitat Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind. Robot An Int. J. 1:1 Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind. Robot An Int. J. 1:1
23.
Zurück zum Zitat Kheirikhah MM, Rabiee S, Edalat ME (2010) A review of shape memory alloy actuators in robotics. Robot Soccer World Cup. Springer, Berlin, pp 206–217 Kheirikhah MM, Rabiee S, Edalat ME (2010) A review of shape memory alloy actuators in robotics. Robot Soccer World Cup. Springer, Berlin, pp 206–217
24.
Zurück zum Zitat Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef
25.
Zurück zum Zitat Hamilton RF, Bimber BA, Andani MT, Elahinia M (2017) Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J Mater Process Technol 250:55–64CrossRef Hamilton RF, Bimber BA, Andani MT, Elahinia M (2017) Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J Mater Process Technol 250:55–64CrossRef
26.
Zurück zum Zitat Moghaddam NS, Saedi S, Amerinatanzi A, Hinojos A, Ramazani A, Kundin J, Mills MJ, Karaca H, Elahinia M (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9:1–11 Moghaddam NS, Saedi S, Amerinatanzi A, Hinojos A, Ramazani A, Kundin J, Mills MJ, Karaca H, Elahinia M (2019) Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Sci Rep 9:1–11
27.
Zurück zum Zitat Haberland C, Elahinia M, Walker JM, Meier H, Frenzel J (2014) On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 23:104002CrossRef Haberland C, Elahinia M, Walker JM, Meier H, Frenzel J (2014) On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 23:104002CrossRef
28.
Zurück zum Zitat Walker JM, Haberland C, Andani MT, Karaca HE, Dean D, Elahinia M (2016) Process development and characterization of additively manufactured nickel–titanium shape memory parts. J Intell Mater Syst Struct 27:2653–2660CrossRef Walker JM, Haberland C, Andani MT, Karaca HE, Dean D, Elahinia M (2016) Process development and characterization of additively manufactured nickel–titanium shape memory parts. J Intell Mater Syst Struct 27:2653–2660CrossRef
29.
Zurück zum Zitat Andani MT, Moghaddam NS, Haberland C, Dean D, Miller MJ, Elahinia M (2014) Metals for bone implants. Part 1: Powder metallurgy and implant rendering. Acta Biomater 10:4058–4070CrossRef Andani MT, Moghaddam NS, Haberland C, Dean D, Miller MJ, Elahinia M (2014) Metals for bone implants. Part 1: Powder metallurgy and implant rendering. Acta Biomater 10:4058–4070CrossRef
30.
Zurück zum Zitat Xue L, Atli KC, Zhang C, Hite N, Srivastava A, Leff A, Wilson A, Sharar D, Elwany A, Arroyave R (2022) Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater 1:117781CrossRef Xue L, Atli KC, Zhang C, Hite N, Srivastava A, Leff A, Wilson A, Sharar D, Elwany A, Arroyave R (2022) Laser powder bed fusion of defect-free NiTi shape memory alloy parts with superior tensile superelasticity. Acta Mater 1:117781CrossRef
31.
Zurück zum Zitat Shen J, Zeng Z, Nematollahi M, Schell N, Maawad E, Vasin RN, Safaei K, Poorganji B, Elahinia M, Oliveira JP (2021) In-situ synchrotron x-ray diffraction analysis of the elastic behaviour of martensite and H-phase in a NiTiHf high temperature shape memory alloy fabricated by laser powder bed fusion. Addit Manuf Lett 1:100003CrossRef Shen J, Zeng Z, Nematollahi M, Schell N, Maawad E, Vasin RN, Safaei K, Poorganji B, Elahinia M, Oliveira JP (2021) In-situ synchrotron x-ray diffraction analysis of the elastic behaviour of martensite and H-phase in a NiTiHf high temperature shape memory alloy fabricated by laser powder bed fusion. Addit Manuf Lett 1:100003CrossRef
32.
Zurück zum Zitat Nematollahi M, Safaei K, Bayati P, Elahinia M (2021) Functionally graded NiTi shape memory alloy: Selective laser melting fabrication and multi-scale characterization. Mater Lett 292:129648CrossRef Nematollahi M, Safaei K, Bayati P, Elahinia M (2021) Functionally graded NiTi shape memory alloy: Selective laser melting fabrication and multi-scale characterization. Mater Lett 292:129648CrossRef
33.
Zurück zum Zitat Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A 620:213–222CrossRef Kunze K, Etter T, Grässlin J, Shklover V (2015) Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A 620:213–222CrossRef
34.
Zurück zum Zitat Saedi S, Moghaddam NS, Amerinatanzi A, Elahinia M, Karaca HE (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560CrossRef Saedi S, Moghaddam NS, Amerinatanzi A, Elahinia M, Karaca HE (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560CrossRef
35.
Zurück zum Zitat Nematollahi M, Toker GP, Safaei K, Hinojos A, Saghaian SE, Benafan O, Mills MJ, Karaca H, Elahinia M (2020) Laser powder bed fusion of NiTiHf high-temperature shape memory alloy: effect of process parameters on the thermomechanical behavior. Metals (Basel) 10:1522CrossRef Nematollahi M, Toker GP, Safaei K, Hinojos A, Saghaian SE, Benafan O, Mills MJ, Karaca H, Elahinia M (2020) Laser powder bed fusion of NiTiHf high-temperature shape memory alloy: effect of process parameters on the thermomechanical behavior. Metals (Basel) 10:1522CrossRef
36.
Zurück zum Zitat Ma J, Franco B, Tapia G, Karayagiz K, Johnson L, Liu J, Arroyave R, Karaman I, Elwany A (2017) Spatial control of functional response in 4D-printed active metallic structures. Sci Rep 7:1–8 Ma J, Franco B, Tapia G, Karayagiz K, Johnson L, Liu J, Arroyave R, Karaman I, Elwany A (2017) Spatial control of functional response in 4D-printed active metallic structures. Sci Rep 7:1–8
37.
Zurück zum Zitat Wang X, Kustov S, Van Humbeeck J (2018) A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials (Basel) 11:1683CrossRef Wang X, Kustov S, Van Humbeeck J (2018) A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials (Basel) 11:1683CrossRef
38.
Zurück zum Zitat Alsalla HH, Smith C, Hao L (2018) Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316L stainless steel. Rapid Prototyp. J. 1:1 Alsalla HH, Smith C, Hao L (2018) Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316L stainless steel. Rapid Prototyp. J. 1:1
39.
Zurück zum Zitat Agius D, Kourousis KI, Wallbrink C, Song T (2017) Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation. Mater Sci Eng A 701:85–100CrossRef Agius D, Kourousis KI, Wallbrink C, Song T (2017) Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation. Mater Sci Eng A 701:85–100CrossRef
40.
Zurück zum Zitat Nematollahi M, Saghaian SE, Safaei K, Bayati P, Bassani P, Biffi C, Tuissi A, Karaca H, Elahinia M (2021) Building orientation-structure-property in laser powder bed fusion of NiTi shape memory alloy. J Alloys Compd 873:159791CrossRef Nematollahi M, Saghaian SE, Safaei K, Bayati P, Bassani P, Biffi C, Tuissi A, Karaca H, Elahinia M (2021) Building orientation-structure-property in laser powder bed fusion of NiTi shape memory alloy. J Alloys Compd 873:159791CrossRef
41.
Zurück zum Zitat Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K (2014) Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater 76:40–53CrossRef Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K (2014) Transformation strains and temperatures of a nickel–titanium–hafnium high temperature shape memory alloy. Acta Mater 76:40–53CrossRef
42.
Zurück zum Zitat Safaei K, Nematollahi M, Bayati P, Dabbaghi H, Benafan O, Elahinia M (2021) Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes. Eng Struct 226:111383CrossRef Safaei K, Nematollahi M, Bayati P, Dabbaghi H, Benafan O, Elahinia M (2021) Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes. Eng Struct 226:111383CrossRef
44.
Zurück zum Zitat Mirvakili SM, Hunter IW (2017) Fast torsional artificial muscles from NiTi twisted yarns. ACS Appl Mater Interfaces 9:16321–16326CrossRef Mirvakili SM, Hunter IW (2017) Fast torsional artificial muscles from NiTi twisted yarns. ACS Appl Mater Interfaces 9:16321–16326CrossRef
45.
Zurück zum Zitat Icardi U, Ferrero L (2009) Preliminary study of an adaptive wing with shape memory alloy torsion actuators. Mater Des 30:4200–4210CrossRef Icardi U, Ferrero L (2009) Preliminary study of an adaptive wing with shape memory alloy torsion actuators. Mater Des 30:4200–4210CrossRef
46.
Zurück zum Zitat K.S. Baghbaderani, M. Nematollahi, P. Bayatimalayeri, H. Dabbaghi, A. Jahadakbar, M. Elahinia, Mechanical Evaluation of Selective Laser Melted Ni-Rich NiTi: Compression, Tension, and Torsion, ArXiv Prepr. ArXiv2006.15659. (2020). K.S. Baghbaderani, M. Nematollahi, P. Bayatimalayeri, H. Dabbaghi, A. Jahadakbar, M. Elahinia, Mechanical Evaluation of Selective Laser Melted Ni-Rich NiTi: Compression, Tension, and Torsion, ArXiv Prepr. ArXiv2006.15659. (2020).
47.
Zurück zum Zitat F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX–free and open source software toolbox, in: Solid State Phenom., Trans Tech Publ, 2010: pp. 63–68. F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX–free and open source software toolbox, in: Solid State Phenom., Trans Tech Publ, 2010: pp. 63–68.
48.
Zurück zum Zitat Parvizi S, Hashemi SM, Asgarinia F, Nematollahi M, Elahinia M (2021) Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review. Prog Mater Sci 117:100739CrossRef Parvizi S, Hashemi SM, Asgarinia F, Nematollahi M, Elahinia M (2021) Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review. Prog Mater Sci 117:100739CrossRef
49.
Zurück zum Zitat Elahinia M, Nematollahi M, Baghbaderani KS, Nespoli A, Stortiero F (2021) Manufacturing of shape memory alloys. Shape Memory Alloy Engineering. Elsevier, Amsterdam, pp 165–193CrossRef Elahinia M, Nematollahi M, Baghbaderani KS, Nespoli A, Stortiero F (2021) Manufacturing of shape memory alloys. Shape Memory Alloy Engineering. Elsevier, Amsterdam, pp 165–193CrossRef
50.
Zurück zum Zitat Wang W, Lee PD, Mclean M (2003) A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection. Acta Mater 51:2971–2987CrossRef Wang W, Lee PD, Mclean M (2003) A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection. Acta Mater 51:2971–2987CrossRef
51.
Zurück zum Zitat Shi R, Khairallah SA, Roehling TT, Heo TW, McKeown JT, Matthews MJ (2020) Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater 184:284–305CrossRef Shi R, Khairallah SA, Roehling TT, Heo TW, McKeown JT, Matthews MJ (2020) Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy. Acta Mater 184:284–305CrossRef
52.
Zurück zum Zitat Elibol C, Wagner M-X (2015) Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression–shear. Mater Sci Eng A 621:76–81CrossRef Elibol C, Wagner M-X (2015) Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression–shear. Mater Sci Eng A 621:76–81CrossRef
53.
Zurück zum Zitat Reedlunn B, LePage WS, Daly SH, Shaw JA (2020) Axial-torsion behavior of superelastic tubes: Part I, proportional isothermal experiments. Int J Solids Struct 199:1–35CrossRef Reedlunn B, LePage WS, Daly SH, Shaw JA (2020) Axial-torsion behavior of superelastic tubes: Part I, proportional isothermal experiments. Int J Solids Struct 199:1–35CrossRef
54.
Zurück zum Zitat Matsumoto O, Miyazaki S, Otsuka K, Tamura H (1987) Crystallography of martensitic transformation in Ti–Ni single crystals. Acta Metall 35:2137–2144CrossRef Matsumoto O, Miyazaki S, Otsuka K, Tamura H (1987) Crystallography of martensitic transformation in Ti–Ni single crystals. Acta Metall 35:2137–2144CrossRef
55.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRef
Metadaten
Titel
The Build Orientation Dependency of NiTi Shape Memory Alloy Processed by Laser Powder Bed Fusion
verfasst von
Keyvan Safaei
Nasrin Taheri Andani
Mohammadreza Nematollahi
Othmane Benafan
Behrang Poorganji
Mohammad Elahinia
Publikationsdatum
30.09.2022
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 4/2022
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-022-00389-8

Weitere Artikel der Ausgabe 4/2022

Shape Memory and Superelasticity 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.