Skip to main content

2018 | OriginalPaper | Buchkapitel

The Characterization of the Residence Time Distribution in a Fluid Mixer by Means of the Information Entropy

verfasst von : Marian Kordas, Daniel Pluskota, Rafał Rakoczy

Erschienen in: Practical Aspects of Chemical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of residence time distribution (RTD) is applied to describe a mixing process. The main idea of the proposed approach is the utilization of experimental RTD measurements to determine the information entropy. This paper discusses a method to compute information mixing capacity as a measure of mixing performance for a continuous flow system. The proposed criterion is applied to evaluate a mixing system with motionless inserts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adeosun JT, Lawal A (2010) Residence-time distribution as a measure of mixing in T-junction and multilaminated/elongational flow micromixers. Chem Eng Sci 65:1865–1874CrossRef Adeosun JT, Lawal A (2010) Residence-time distribution as a measure of mixing in T-junction and multilaminated/elongational flow micromixers. Chem Eng Sci 65:1865–1874CrossRef
Zurück zum Zitat Buso A, Giomo M, Boaretto L (1997) New electrochemical reactor for wastewater treatment: mathematical model. Chem Eng Process 36:411–418CrossRef Buso A, Giomo M, Boaretto L (1997) New electrochemical reactor for wastewater treatment: mathematical model. Chem Eng Process 36:411–418CrossRef
Zurück zum Zitat Christensen D, Nijenhuis J, van Ommen J et al (2008) Residence times in fluidized beds with secondary gas injection. Powder Technol 180:321–331CrossRef Christensen D, Nijenhuis J, van Ommen J et al (2008) Residence times in fluidized beds with secondary gas injection. Powder Technol 180:321–331CrossRef
Zurück zum Zitat Cocero MJ, Garcia J (2001) Mathematical model of supercritical extraction applied to oil seed extraction by CO2+ saturated alcohol—II. Shortcut methods. J Supercrit Fluid 20:245–255CrossRef Cocero MJ, Garcia J (2001) Mathematical model of supercritical extraction applied to oil seed extraction by CO2+ saturated alcohol—II. Shortcut methods. J Supercrit Fluid 20:245–255CrossRef
Zurück zum Zitat Danckwerts PV (1958) The effect of incomplete mixing on homogeneous reactions. Chem Eng Sci 8:93–99CrossRef Danckwerts PV (1958) The effect of incomplete mixing on homogeneous reactions. Chem Eng Sci 8:93–99CrossRef
Zurück zum Zitat Gao Y, Vanarase A, Muzzio F et al (2011) Characterizing continuous powder mixing using residence time distribution. Chem Eng Sci 66:417–425CrossRef Gao Y, Vanarase A, Muzzio F et al (2011) Characterizing continuous powder mixing using residence time distribution. Chem Eng Sci 66:417–425CrossRef
Zurück zum Zitat García-Sera J, García-Verdugo E, Hyde JR et al (2007) Modelling residence time distribution in chemical reactors: a novel generalised n-laminar model. Application to supercritical CO2 and subcritical water tubular reactors. J Supercrit Fluid 41:82–91CrossRef García-Sera J, García-Verdugo E, Hyde JR et al (2007) Modelling residence time distribution in chemical reactors: a novel generalised n-laminar model. Application to supercritical CO2 and subcritical water tubular reactors. J Supercrit Fluid 41:82–91CrossRef
Zurück zum Zitat Guo Q, Liang Q, Ni J et al (2008) Markov chain model of residence time distribution in a new type entrained-flow gasifier. Chem Eng Process 47:2061–2065CrossRef Guo Q, Liang Q, Ni J et al (2008) Markov chain model of residence time distribution in a new type entrained-flow gasifier. Chem Eng Process 47:2061–2065CrossRef
Zurück zum Zitat Harris A, Thorpe R, Davidson J (2002) Stochastic modelling of the particle residence time distribution in circulating fluidised bed risers. Chem Eng Sci 57:4779–4796CrossRef Harris A, Thorpe R, Davidson J (2002) Stochastic modelling of the particle residence time distribution in circulating fluidised bed risers. Chem Eng Sci 57:4779–4796CrossRef
Zurück zum Zitat Hornung C, Mackley M (2009) The measurements and characterisation of residence time distribution for laminar liquid flow in plastic microcapillary arrays. Chem Eng Sci 64:3889–3902CrossRef Hornung C, Mackley M (2009) The measurements and characterisation of residence time distribution for laminar liquid flow in plastic microcapillary arrays. Chem Eng Sci 64:3889–3902CrossRef
Zurück zum Zitat Jafari M, Soltan Mohammadzadeh JS (2005) Mixing time, homogenization energy and residence time distribution in a gas-induced contractor. Trans IChemE Part A 83:452–459CrossRef Jafari M, Soltan Mohammadzadeh JS (2005) Mixing time, homogenization energy and residence time distribution in a gas-induced contractor. Trans IChemE Part A 83:452–459CrossRef
Zurück zum Zitat Jones SC (2000) Static mixers for water treatment: a computational fluid dynamics model. Ph.D. thesis. Georgia Institute of Technology, Source DAI-B 61/04, p 2132 Jones SC (2000) Static mixers for water treatment: a computational fluid dynamics model. Ph.D. thesis. Georgia Institute of Technology, Source DAI-B 61/04, p 2132
Zurück zum Zitat Jones SC, Sotiropoulos F, Amirtharajah A (2002) Numerical modeling of helical static mixers for water treatment. J Environ Eng 128:431–440CrossRef Jones SC, Sotiropoulos F, Amirtharajah A (2002) Numerical modeling of helical static mixers for water treatment. J Environ Eng 128:431–440CrossRef
Zurück zum Zitat Jones PN, Özcan-Taşkin NG, Yianneskis M (2009) The use of momentum ration to evaluate the performance of CSTRs. Chem Eng Res Des 87:485–491CrossRef Jones PN, Özcan-Taşkin NG, Yianneskis M (2009) The use of momentum ration to evaluate the performance of CSTRs. Chem Eng Res Des 87:485–491CrossRef
Zurück zum Zitat Levenspiel O (1998) Chemical reaction engineering. Wiley, New York Levenspiel O (1998) Chemical reaction engineering. Wiley, New York
Zurück zum Zitat Lin FB, Sotiropoulos F (1997) Strongly-coupled multigrid method for 3-D incompressible flows using near-wall turbulence closures. J Fluids Eng 119:314–324CrossRef Lin FB, Sotiropoulos F (1997) Strongly-coupled multigrid method for 3-D incompressible flows using near-wall turbulence closures. J Fluids Eng 119:314–324CrossRef
Zurück zum Zitat Liu M (2012) Age distribution and the degree of mixing in continuous flow stirred tank reactors. Chem Eng Sci 69:382–393CrossRef Liu M (2012) Age distribution and the degree of mixing in continuous flow stirred tank reactors. Chem Eng Sci 69:382–393CrossRef
Zurück zum Zitat Madhurabthakam C, Pan Q, Rempel G (2009) Residence time distribution and liquid holdup in kenics KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system. Chem Eng Sci 64:3320–3328CrossRef Madhurabthakam C, Pan Q, Rempel G (2009) Residence time distribution and liquid holdup in kenics KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system. Chem Eng Sci 64:3320–3328CrossRef
Zurück zum Zitat Martin AD (2000) Interpretation of residence time distribution. Chem Eng Sci 55:5907–5917CrossRef Martin AD (2000) Interpretation of residence time distribution. Chem Eng Sci 55:5907–5917CrossRef
Zurück zum Zitat Masiuk M, Szymański E (1997) Polish Patent No. 324,150. Polish Patent and Trademark Office, Warszawa Masiuk M, Szymański E (1997) Polish Patent No. 324,150. Polish Patent and Trademark Office, Warszawa
Zurück zum Zitat Melo PA, Carlos Pinto J, Jr Biscaia E (2001) Characterization of the residence time distribution in loop reactors. Chem Eng Sci 56:2703–2713CrossRef Melo PA, Carlos Pinto J, Jr Biscaia E (2001) Characterization of the residence time distribution in loop reactors. Chem Eng Sci 56:2703–2713CrossRef
Zurück zum Zitat Mizonov V, Berthiaux H, Gatumel C et al (2009) Influence of crosswise non-homogenity of particulate flow on residence time distribution in a continuous mixer. Powder Technol 190:6–9CrossRef Mizonov V, Berthiaux H, Gatumel C et al (2009) Influence of crosswise non-homogenity of particulate flow on residence time distribution in a continuous mixer. Powder Technol 190:6–9CrossRef
Zurück zum Zitat Nikitine C, Rodier E, Sauceau M et al (2009) Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process. Chem Eng Res Des 87:809–816CrossRef Nikitine C, Rodier E, Sauceau M et al (2009) Residence time distribution of a pharmaceutical grade polymer melt in a single screw extrusion process. Chem Eng Res Des 87:809–816CrossRef
Zurück zum Zitat Ogawa K (2007) Chemical engineering. A new perspective. Elsevier Ogawa K (2007) Chemical engineering. A new perspective. Elsevier
Zurück zum Zitat Peng SH, Davidson L, Holmberg S (1996) The two-equations turbulence k-omega model applied to recirculating ventilation flows. Rept. 96/13, Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg Peng SH, Davidson L, Holmberg S (1996) The two-equations turbulence k-omega model applied to recirculating ventilation flows. Rept. 96/13, Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg
Zurück zum Zitat Pröll T, Todinca T, Şuta M et al (2007) Acid gas absorption in trickle flow columns—modelling of the residence time distribution of a pilot plant. Chem Eng Process 46:262–270CrossRef Pröll T, Todinca T, Şuta M et al (2007) Acid gas absorption in trickle flow columns—modelling of the residence time distribution of a pilot plant. Chem Eng Process 46:262–270CrossRef
Zurück zum Zitat Rakoczy R, Masiuk S (2010) Influence of transverse rotating magnetic field on enhancement of solid dissolution process. AIChE J 56:1416–1433CrossRef Rakoczy R, Masiuk S (2010) Influence of transverse rotating magnetic field on enhancement of solid dissolution process. AIChE J 56:1416–1433CrossRef
Zurück zum Zitat Rakoczy R, Kordas M, Grądzik P et al (2013) Experimental study and mathematical modeling of the residence time distribution in magnetic mixer. Polish J Chem Technol 15:53–61CrossRef Rakoczy R, Kordas M, Grądzik P et al (2013) Experimental study and mathematical modeling of the residence time distribution in magnetic mixer. Polish J Chem Technol 15:53–61CrossRef
Zurück zum Zitat Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423 and 623–656CrossRef Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423 and 623–656CrossRef
Zurück zum Zitat Stringer RM, Zang J, Hillis AJ (2014) Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Eng 87:1–9CrossRef Stringer RM, Zang J, Hillis AJ (2014) Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers. Ocean Eng 87:1–9CrossRef
Zurück zum Zitat Thakur RK, Vial C, Nigam KDP et al (2003) Static mixers in the process industries—a review. Institution of Chemical Engineers Thakur RK, Vial C, Nigam KDP et al (2003) Static mixers in the process industries—a review. Institution of Chemical Engineers
Zurück zum Zitat Togun H, Safaei MR, Sadri R et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153–170 Togun H, Safaei MR, Sadri R et al (2014) Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput 239:153–170
Zurück zum Zitat Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310CrossRef Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310CrossRef
Zurück zum Zitat Yablonsky GS, Constales D, Marin GB (2009) A new approach to diagnostics of ideal and non-ideal flow patterns: I. The concept of reactive-mixing index (REMI) analysis. Chem Eng Sci 64:4875–4883CrossRef Yablonsky GS, Constales D, Marin GB (2009) A new approach to diagnostics of ideal and non-ideal flow patterns: I. The concept of reactive-mixing index (REMI) analysis. Chem Eng Sci 64:4875–4883CrossRef
Zurück zum Zitat Yianatos JB, Bergh LG, Díaz F et al (2005) Mixing characteristics of industrial flotation equipment. Chem Eng Sci 60:2273–2282CrossRef Yianatos JB, Bergh LG, Díaz F et al (2005) Mixing characteristics of industrial flotation equipment. Chem Eng Sci 60:2273–2282CrossRef
Zurück zum Zitat Zhang T, Wang T, Wang J (2005) Mathematical modelling of the residence time distribution in loop reactors. Chem Eng Process 44:1221–1227CrossRef Zhang T, Wang T, Wang J (2005) Mathematical modelling of the residence time distribution in loop reactors. Chem Eng Process 44:1221–1227CrossRef
Zurück zum Zitat Znad H, Báleš V, Kawase Y (2004) Modeling and scale up of airlift bioreactor. Comput Chem Eng 28:2765–2777CrossRef Znad H, Báleš V, Kawase Y (2004) Modeling and scale up of airlift bioreactor. Comput Chem Eng 28:2765–2777CrossRef
Zurück zum Zitat Zwietering TN (1959) The degree of mixing in continuous flow system. Chem Eng Sci 11:1–15CrossRef Zwietering TN (1959) The degree of mixing in continuous flow system. Chem Eng Sci 11:1–15CrossRef
Metadaten
Titel
The Characterization of the Residence Time Distribution in a Fluid Mixer by Means of the Information Entropy
verfasst von
Marian Kordas
Daniel Pluskota
Rafał Rakoczy
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-73978-6_14