Skip to main content
Erschienen in: Automatic Control and Computer Sciences 7/2020

01.12.2020

The Comparison of Diffeomorphic Images based on the Construction of Persistent Homology

verfasst von: S. N. Chukanov

Erschienen in: Automatic Control and Computer Sciences | Ausgabe 7/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An object shape analysis is a problem that is related to such areas as geometry, topology, image processing and machine learning. For analyzing the form, the deformation between the source and terminal form of the object is estimated. The most used form analysis model is the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. The LDDMM model can be supplemented with functional non-geometric information about objects (volume, color, formation time). The paper considers algorithms for constructing sets of barcodes for comparing diffeomorphic images, which are real values taken by persistent homology. A distinctive feature of the use of persistent homology with respect to methods of algebraic topology is to obtain more information about the shape of the object. An important direction of the application of persistent homology is the study invariants of big data. A method based on persistent cohomology is proposed that combines persistent homology technologies with embedded non-geometric information presented as functions of simplicial complexes. The proposed structure of extended barcodes using cohomology increases the effectiveness of persistent homology methods. A modification of the Wasserstein method for finding the distance between images by introducing non-geometric information was proposed. The possibility of the formation of barcodes of images invariant to transformations of rotation, translation and similarity is considered.
Literatur
1.
Zurück zum Zitat Trouve, A. and Younes, L., Metamorphoses through Lie group action, Found. Comput. Math., 2005, vol. 5, no. 2, pp. 173–198.MathSciNetCrossRef Trouve, A. and Younes, L., Metamorphoses through Lie group action, Found. Comput. Math., 2005, vol. 5, no. 2, pp. 173–198.MathSciNetCrossRef
2.
Zurück zum Zitat Younes, L., Arrate, F., and Miller, M.I., Evolutions equations in computational anatomy, NeuroImage, 2009, vol. 45, no. 1, pp. 540–550.CrossRef Younes, L., Arrate, F., and Miller, M.I., Evolutions equations in computational anatomy, NeuroImage, 2009, vol. 45, no. 1, pp. 540–550.CrossRef
3.
Zurück zum Zitat Beg, M., Miller, M., Trouve, A., and Younes, L., Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 2005, vol. 61, no. 2, pp. 139–157.CrossRef Beg, M., Miller, M., Trouve, A., and Younes, L., Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 2005, vol. 61, no. 2, pp. 139–157.CrossRef
4.
Zurück zum Zitat Marsland, S. and McLachlan, R.I., A Hamiltonian particle method for diffeomorphic image registration, Biennial International Conference on Information Processing in Medical Imaging, 2006, pp. 396–407. Marsland, S. and McLachlan, R.I., A Hamiltonian particle method for diffeomorphic image registration, Biennial International Conference on Information Processing in Medical Imaging, 2006, pp. 396–407.
5.
Zurück zum Zitat Carlsson, G., Topological pattern recognition for point cloud data, Acta Numer., 2014, vol. 23, pp. 289–368.MathSciNetCrossRef Carlsson, G., Topological pattern recognition for point cloud data, Acta Numer., 2014, vol. 23, pp. 289–368.MathSciNetCrossRef
6.
7.
Zurück zum Zitat Leichter, S.V. and Chukanov, S.N., Matching of images based on their diffeomorphic mapping, Komp’uyt. Opt., 2018, vol. 42, no. 1, pp. 96–104. Leichter, S.V. and Chukanov, S.N., Matching of images based on their diffeomorphic mapping, Komp’uyt. Opt., 2018, vol. 42, no. 1, pp. 96–104.
8.
Zurück zum Zitat Chukanov, S.N., Definitions of invariants for n-dimensional traced vector fields of dynamic systems Pattern Recognit. Image Anal., 2009, vol. 19, no. 2, pp. 303–305.CrossRef Chukanov, S.N., Definitions of invariants for n-dimensional traced vector fields of dynamic systems Pattern Recognit. Image Anal., 2009, vol. 19, no. 2, pp. 303–305.CrossRef
9.
Zurück zum Zitat Chukanov, S.N. and Ul’yanov, D.V., Formation of invariants in the visualization of vector fields based on the construction of the homotopy operator, Komp’uyt. Opt., 2012, vol. 36, no. 4, pp. 622–626. Chukanov, S.N. and Ul’yanov, D.V., Formation of invariants in the visualization of vector fields based on the construction of the homotopy operator, Komp’uyt. Opt., 2012, vol. 36, no. 4, pp. 622–626.
10.
Zurück zum Zitat Chukanov, S.N., Constructing invariants for visualization of vector fields defined by integral curves of dynamic systems, Optoelectron. Instrum. Data Process., 2011, vol. 47, pp. 151–155.CrossRef Chukanov, S.N., Constructing invariants for visualization of vector fields defined by integral curves of dynamic systems, Optoelectron. Instrum. Data Process., 2011, vol. 47, pp. 151–155.CrossRef
11.
Zurück zum Zitat Edelsbrunner, H. and Harer, J.L., Computational Topology: An Introduction, Providence, RI: Am. Math. Soc., 2010.MATH Edelsbrunner, H. and Harer, J.L., Computational Topology: An Introduction, Providence, RI: Am. Math. Soc., 2010.MATH
12.
Zurück zum Zitat Garber, A., Edelsbrunner, H., Ivanov, A., Musin, O., and Nevskii, M., International Conference Geometry, Topology, and Applications, Model. Anal. Inf. Sist., 2013, vol. 20, no. 6, pp. 95–102. Garber, A., Edelsbrunner, H., Ivanov, A., Musin, O., and Nevskii, M., International Conference Geometry, Topology, and Applications, Model. Anal. Inf. Sist., 2013, vol. 20, no. 6, pp. 95–102.
13.
Zurück zum Zitat Adams, H. and Tausz, A., JavaPlex Tutorial, 2011. Adams, H. and Tausz, A., JavaPlex Tutorial, 2011.
14.
Zurück zum Zitat Duzhin, S.V. and Chebotarevsky, B.D., Transformation Groups for Beginners, American Mathematical Society, 2004.CrossRef Duzhin, S.V. and Chebotarevsky, B.D., Transformation Groups for Beginners, American Mathematical Society, 2004.CrossRef
15.
Zurück zum Zitat Cang, Z. and Wei, G., Persistent cohomology for data with multicomponent heterogeneous information, 2018. http://gis-lab.info/qa/srtm.html. Cang, Z. and Wei, G., Persistent cohomology for data with multicomponent heterogeneous information, 2018. http://​gis-lab.​info/​qa/​srtm.​html.​
16.
Zurück zum Zitat De Silva, V., Morozov, D., and Vejdemo-Johansson, M., Persistent cohomology and circular coordinates, Discrete Comput. Geom., 2011, vol. 45, no. 4, pp. 737–759.MathSciNetCrossRef De Silva, V., Morozov, D., and Vejdemo-Johansson, M., Persistent cohomology and circular coordinates, Discrete Comput. Geom., 2011, vol. 45, no. 4, pp. 737–759.MathSciNetCrossRef
17.
Zurück zum Zitat Chung, F.R.K. and Graham, F.C., Spectral Graph Theory, American Mathematical Society, 1997. Chung, F.R.K. and Graham, F.C., Spectral Graph Theory, American Mathematical Society, 1997.
Metadaten
Titel
The Comparison of Diffeomorphic Images based on the Construction of Persistent Homology
verfasst von
S. N. Chukanov
Publikationsdatum
01.12.2020
Verlag
Pleiades Publishing
Erschienen in
Automatic Control and Computer Sciences / Ausgabe 7/2020
Print ISSN: 0146-4116
Elektronische ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411620070056

Weitere Artikel der Ausgabe 7/2020

Automatic Control and Computer Sciences 7/2020 Zur Ausgabe

Neuer Inhalt