Skip to main content
Erschienen in: Transportation 3/2018

22.12.2016

The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study

Erschienen in: Transportation | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Negative externalities cause inefficiencies in the allocation of capacities and resources in a transport system. Marginal social cost pricing allows to correct for these inefficiencies in a simulation environment and to derive real-world policy recommendations. In this context, it has been shown for analytical models considering more than one externality, that the correlation between the externalities needs to be taken into account. Typically, in order to avoid overpricing, this is performed by introducing correction factors which capture the correlation effect. However, the correlation structure between, say, emission and congestion externalities changes for every congested facility over time of day. This makes it close to impossible to calculate the factors analytically for large-scale systems. Hence, this paper presents a simulation-based approach to calculate and internalize the correct dynamic price levels for both externalities simultaneously. For a real-world case study, it is shown that the iterative calculation of prices based on cost estimates from the literature allows to identify the amplitude of the correlation between the two externalities under consideration: for the urban travelers of the case study, emission toll levels—without pricing congestion—turn out to be 4.0% too high in peak hours and 2.8% too high in off-peak hours. In contrary, congestion toll levels—without pricing emissions—are overestimated by 3.0% in peak hours and by 7.2% in off-peak hours. With a joint pricing policy of both externalities, the paper shows that the approach is capable to determine the amplitude of the necessary correction factors for large-scale systems. It also provides the corrected average toll levels per vehicle kilometer for peak and off-peak hours for the case study under consideration: again, for urban travelers, the correct price level for emission and congestion externalities amounts approximately to 38 \({EUR}ct/\rm {km}\) in peak hours and to 30 \({EUR}ct/\rm {km}\) in off-peak hours. These toll levels can be used to derive real-world pricing schemes. Finally, the economic assessment indicators for the joint pricing policy provided in the paper allow to compare other policies to this benchmark state of the transport system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
‘Externality’ refers in this paper to ‘negative externality’ unless otherwise stated.
 
2
‘Multi-Agent Transport Simulation’, see www.​matsim.​org.
 
3
See Charypar and Nagel (2005) and Nagel et al. (2016), section “Base case”, for a more detailed description.
 
4
Delay is in this study defined by the difference between the actual travel time on a link and the link’s free speed travel time. That is, delays are calculated on a per-link basis and not for entire routes.
 
5
The VTTS is defined as the individual willingness-to-pay for reducing the travel time by one hour. For linear utility functions, it is the ratio of the marginal utility of travel time and the marginal utility of money. The former is the sum of the disutility for traveling (\(\beta _{trav,mode(q)}\)) and the negative utility of time as a resource (\(- \beta _{dur}\)). Please note that the person-specific VTTS in MATSim can vary significantly with the time pressure which an individual experiences. This is because of the non-linear utility function for performing activities, influencing the actual value of (\(\beta _{dur}\)).
 
6
‘Handbook Emission Factors for Road Transport’, Version 3.1, see www.​hbefa.​net.
 
7
Please note that, in order to improve the computational efficiency, the queue model controls agents only at link entry/exit and never in between (Agarwal et al. 2015). Therefore, both agents can reach at the end of the link simultaneously, however, agents will leave the link while respecting the flow capacity (outflow) of the link.
 
8
‘Verkehr In Städten UMlegung’, see www.​ptv.​de.
 
9
An urban traveler can switch mode between car and slower PT (speed 25  \({\rm km/h}\)) and similarly, commuters and reverse commuters can switch mode between car and faster PT (speed 50  \({\rm km/h}\)). See section “Base case” for details on slower and faster PT.
 
10
The user benefits calculated from the utility of the last executed plan are not same as the user benefits calculated from the logsum over all plans of an agent. The latter (also sometimes called expected maximum utility) considers utility from heterogeneity in the choice set and is in theory the preferable figure for calculating user benefits in MATSim (see Kickhöfer and Nagel 2016a). However, as the authors point out, the current MATSim implementation might, under certain conditions, yield biased choice sets. In consequence, the utility of the last executed plan is used in the present paper for economic analysis.
 
11
A recent study by Kickhöfer and Kern (2015) shows that the framework in principle allows for a similar classification in the case of emission costs. However, in the present study, only caused emission costs are considered and referred to as ‘emission costs’ from here on.
 
12
This result has been confirmed by two simulations with different random seeds, which are used to initialize the pseudo random number generator in MATSim. A different random seed will eventually result in different simulation outcomes. For an example of the effect of randomness on optimal supply in MATSim, see, e.g., Kaddoura et al. (2015a).
 
13
Peak hours are identified as 07:00–10:00 and 15:00–18:00 considering total travel demand of all user groups in the BAU scenario.
 
14
For the visual presentation, a Gaussian distance weighting function is used to smooth emissions and delays throughout the area of Munich and surroundings. Uniform hexagonal cells of size 500 m are used for this purpose. The smoothing radius is assumed to be 500 m. For more information on the exact visualization procedure, please refer to Kickhöfer (2014).
 
15
All important pollutants are considered for pricing. For illustration purposes, the emission plot only shows \(NO_2\).
 
16
In peak hours, the congestion pricing scheme and combined pricing scheme exhibit similar patterns.
 
Literatur
Zurück zum Zitat Agarwal, A., Zilske, M., Rao, K., Nagel, K.: An elegant and computationally efficient approach for heterogeneous traffic modelling using agent based simulation. Procedia Comput. Sci. 52(C), 962–967 (2015). doi:10.1016/j.procs.2015.05.173 CrossRef Agarwal, A., Zilske, M., Rao, K., Nagel, K.: An elegant and computationally efficient approach for heterogeneous traffic modelling using agent based simulation. Procedia Comput. Sci. 52(C), 962–967 (2015). doi:10.​1016/​j.​procs.​2015.​05.​173 CrossRef
Zurück zum Zitat Agarwal, A., Lämmel, G., Nagel, K.: Modelling of backward travelling holes in mixed traffic conditions. In: Knoop VL, Daamen W (eds.) Traffic and Granular Flow ’15. Springer, Delft (2016). doi:10.1007/978-3-319-33482-0_53 Agarwal, A., Lämmel, G., Nagel, K.: Modelling of backward travelling holes in mixed traffic conditions. In: Knoop VL, Daamen W (eds.) Traffic and Granular Flow ’15. Springer, Delft (2016). doi:10.​1007/​978-3-319-33482-0_​53
Zurück zum Zitat Balmer, M., Raney, B., Nagel, K.: Adjustment of activity timing and duration in an agent-based traffic flow simulation. In: Timmermans, H. (ed.) Progress in Activity-Based Analysis, pp. 91–114. Elsevier, Oxford (2005) Balmer, M., Raney, B., Nagel, K.: Adjustment of activity timing and duration in an agent-based traffic flow simulation. In: Timmermans, H. (ed.) Progress in Activity-Based Analysis, pp. 91–114. Elsevier, Oxford (2005)
Zurück zum Zitat Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen, K.: MATSim-T: architecture and simulation times. In: Bazzan, A., Klügl, F. (eds.) Multi-agent Systems for Traffic and Transportation, pp. 57–78. IGI Global, Hershey (2009)CrossRef Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K., Axhausen, K.: MATSim-T: architecture and simulation times. In: Bazzan, A., Klügl, F. (eds.) Multi-agent Systems for Traffic and Transportation, pp. 57–78. IGI Global, Hershey (2009)CrossRef
Zurück zum Zitat Böhme, S., Eigenmüller, L.: Pendlerbericht Bayern. Tech. rep, IAB (2006) Böhme, S., Eigenmüller, L.: Pendlerbericht Bayern. Tech. rep, IAB (2006)
Zurück zum Zitat Follmer, R., Kunert, U., Kloas, J., Kuhfeld, H.: Mobilität in Deutschland—Ergebnisbericht. Tech. rep., infas/DIW, Bonn, www.kontiv2002.de (2004) Follmer, R., Kunert, U., Kloas, J., Kuhfeld, H.: Mobilität in Deutschland—Ergebnisbericht. Tech. rep., infas/DIW, Bonn, www.​kontiv2002.​de (2004)
Zurück zum Zitat Gawron, C.: Simulation-based traffic assignment. Ph.D. thesis, University of Cologne, Cologne, Germany (1998) Gawron, C.: Simulation-based traffic assignment. Ph.D. thesis, University of Cologne, Cologne, Germany (1998)
Zurück zum Zitat Ghafghazi, G., Hatzopoulou, M.: Simulating the environmental effects of isolated and area-wide traffic calming schemes using traffic simulation and microscopic emission modeling. Transportation 41, 633–649 (2014)CrossRef Ghafghazi, G., Hatzopoulou, M.: Simulating the environmental effects of isolated and area-wide traffic calming schemes using traffic simulation and microscopic emission modeling. Transportation 41, 633–649 (2014)CrossRef
Zurück zum Zitat Horni, A., Nagel, K., Axhausen, K.W.: Introducing MATSim. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 1. http://matsim.org/the-book (2016) Horni, A., Nagel, K., Axhausen, K.W.: Introducing MATSim. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 1. http://​matsim.​org/​the-book (2016)
Zurück zum Zitat Hülsmann, F., Gerikel, R., Kickhöfer, B., Nagel, K., Luz, R.: Towards a multi-agent based modeling approach for air pollutants in urban regions. In: Conference on “Luftqualität an Straßen”, Bundesanstalt für Straßenwesen, FGSV Verlag GmbH, pp. 144–166, also VSP WP 10-15, see http://www.vsp.tu-berlin.de/publications (2011) Hülsmann, F., Gerikel, R., Kickhöfer, B., Nagel, K., Luz, R.: Towards a multi-agent based modeling approach for air pollutants in urban regions. In: Conference on “Luftqualität an Straßen”, Bundesanstalt für Straßenwesen, FGSV Verlag GmbH, pp. 144–166, also VSP WP 10-15, see http://​www.​vsp.​tu-berlin.​de/​publications (2011)
Zurück zum Zitat Kaddoura, I., Kickhöfer, B., Neumann, A., Tirachini, A.: Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness. Transportation 42(6), 1039–1061 (2015a). doi:10.1007/s11116-014-9533-6 CrossRef Kaddoura, I., Kickhöfer, B., Neumann, A., Tirachini, A.: Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness. Transportation 42(6), 1039–1061 (2015a). doi:10.​1007/​s11116-014-9533-6 CrossRef
Zurück zum Zitat Kaddoura, I., Kickhöfer, B., Neumann, A., Tirachini, A.: Optimal public transport pricing: towards an agent-based marginal social cost approach. J. Transp. Econ. Policy 49(2), 200–218 (2015b) Kaddoura, I., Kickhöfer, B., Neumann, A., Tirachini, A.: Optimal public transport pricing: towards an agent-based marginal social cost approach. J. Transp. Econ. Policy 49(2), 200–218 (2015b)
Zurück zum Zitat Kickhöfer, B., Agarwal, A.: Is marginal emission cost pricing enough to comply with the EU CO2 reduction targets? In: hEART 2015—4th Symposium of the European Association for Research in Transportation, also see VSP WP 15-16. http://www.vsp.tu-berlin.de/publications (2015) Kickhöfer, B., Agarwal, A.: Is marginal emission cost pricing enough to comply with the EU CO2 reduction targets? In: hEART 2015—4th Symposium of the European Association for Research in Transportation, also see VSP WP 15-16. http://​www.​vsp.​tu-berlin.​de/​publications (2015)
Zurück zum Zitat Kickhöfer, B., Nagel, K.: Microeconomic interpretation of MATSim for benefit-cost analysis. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 51. http://matsim.org/the-book (2016a) Kickhöfer, B., Nagel, K.: Microeconomic interpretation of MATSim for benefit-cost analysis. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 51. http://​matsim.​org/​the-book (2016a)
Zurück zum Zitat Kickhöfer, B., Hülsmann, F., Gerike, R., Nagel, K.: Rising car user costs: comparing aggregated and geo-spatial impacts on travel demand and air pollutant emissions. In: Vanoutrive, T., Verhetsel, A. (eds.) Smart Transport Networks: Decision Making, pp. 180–207. Edward Elgar Publishing Ltd, Sustainability and Market structure, NECTAR Series on Transportation and Communications Networks Research (2013) Kickhöfer, B., Hülsmann, F., Gerike, R., Nagel, K.: Rising car user costs: comparing aggregated and geo-spatial impacts on travel demand and air pollutant emissions. In: Vanoutrive, T., Verhetsel, A. (eds.) Smart Transport Networks: Decision Making, pp. 180–207. Edward Elgar Publishing Ltd, Sustainability and Market structure, NECTAR Series on Transportation and Communications Networks Research (2013)
Zurück zum Zitat Li, X., Li, G., Pang, S.S., Yang, X., Tian, J.: Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption: a note. Transp. Res. Part D Transp. Environ. 9(5), 401–407 (2004). doi:10.1016/j.trd.2004.05.001 CrossRef Li, X., Li, G., Pang, S.S., Yang, X., Tian, J.: Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption: a note. Transp. Res. Part D Transp. Environ. 9(5), 401–407 (2004). doi:10.​1016/​j.​trd.​2004.​05.​001 CrossRef
Zurück zum Zitat Lindsey, R., Verhoef, E.T.: Traffic congestion and congestion pricing. In: Hensher, D., Button, K. (eds.) Handbook of Transport Systems and Traffic Control, Handbooks in Transport, vol. 3, pp. 77–105 (2001) Lindsey, R., Verhoef, E.T.: Traffic congestion and congestion pricing. In: Hensher, D., Button, K. (eds.) Handbook of Transport Systems and Traffic Control, Handbooks in Transport, vol. 3, pp. 77–105 (2001)
Zurück zum Zitat MVV: Regionaler Nahverkehrsplan für das Gebiet des Münchner Verkehrs- und Tarifverbundes. Tech. rep, Munich Local Transport Provider (2007) MVV: Regionaler Nahverkehrsplan für das Gebiet des Münchner Verkehrs- und Tarifverbundes. Tech. rep, Munich Local Transport Provider (2007)
Zurück zum Zitat Nagel, K., Flötteröd, G.: Agent-based traffic assignment: going from trips to behavioural travelers. In: Pendyala, R., Bhat, C. (eds.) Travel Behaviour Research in an Evolving World—Selected Papers from the 12th International Conference on Travel Behaviour Research, International Association for Travel Behaviour Research, chap. 12, pp. 261–294 (2012) Nagel, K., Flötteröd, G.: Agent-based traffic assignment: going from trips to behavioural travelers. In: Pendyala, R., Bhat, C. (eds.) Travel Behaviour Research in an Evolving World—Selected Papers from the 12th International Conference on Travel Behaviour Research, International Association for Travel Behaviour Research, chap. 12, pp. 261–294 (2012)
Zurück zum Zitat Nagel, K., Kickhöfer, B., Horni, A., Charypar, D.: A closer look at scoring. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 3. http://matsim.org/the-book (2016) Nagel, K., Kickhöfer, B., Horni, A., Charypar, D.: A closer look at scoring. In: Horni, A., Axhausen, K.W., Nagel, K. (eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 3. http://​matsim.​org/​the-book (2016)
Zurück zum Zitat Osorio, C., Nanduri, K.: Urban trasportation emission mitigation: coupling high-resolution vehicular emissions and traffic models for traffic signal optimization. Transp. Res. Part B Methodol. 81(2), 520–538 (2015). doi:10.1016/j.trb.2014.12.007 CrossRef Osorio, C., Nanduri, K.: Urban trasportation emission mitigation: coupling high-resolution vehicular emissions and traffic models for traffic signal optimization. Transp. Res. Part B Methodol. 81(2), 520–538 (2015). doi:10.​1016/​j.​trb.​2014.​12.​007 CrossRef
Zurück zum Zitat Pigou, A.: The Economics of Welfare. MacMillan, New York (1920) Pigou, A.: The Economics of Welfare. MacMillan, New York (1920)
Zurück zum Zitat Raney, B., Nagel, K.: An improved framework for large-scale multi-agent simulations of travel behaviour. In: Rietveld, P., Jourquin, B., Westin, K. (eds.) Towards Better Performing European Transportation Systems, pp. 305–347. Routledge, London (2006) Raney, B., Nagel, K.: An improved framework for large-scale multi-agent simulations of travel behaviour. In: Rietveld, P., Jourquin, B., Westin, K. (eds.) Towards Better Performing European Transportation Systems, pp. 305–347. Routledge, London (2006)
Zurück zum Zitat Rotaris, L., Danielis, R., Marcucci, E., Massiani, J.: The urban road pricing scheme to curb pollution in Milan, Italy: description, impacts and preliminary cost-benefit analysis assessment. Transp. Res. Part A Policy Pract. 44(5), 359–375 (2010). doi:10.1016/j.tra.2010.03.008 CrossRef Rotaris, L., Danielis, R., Marcucci, E., Massiani, J.: The urban road pricing scheme to curb pollution in Milan, Italy: description, impacts and preliminary cost-benefit analysis assessment. Transp. Res. Part A Policy Pract. 44(5), 359–375 (2010). doi:10.​1016/​j.​tra.​2010.​03.​008 CrossRef
Zurück zum Zitat RSB: Municipality of Munich: Referat für Stadtplanung und Bauordnung (2005) RSB: Municipality of Munich: Referat für Stadtplanung und Bauordnung (2005)
Zurück zum Zitat Schröder, S., Zilske, M., Liedtke, G., Nagel, K.: A computational framework for a multi-agent simulation of freight transport activities. Annual Meeting Preprint 12-4152, Transportation Research Board, Washington D.C., also VSP WP 11-19, see http://www.vsp.tu-berlin.de/publications (2012) Schröder, S., Zilske, M., Liedtke, G., Nagel, K.: A computational framework for a multi-agent simulation of freight transport activities. Annual Meeting Preprint 12-4152, Transportation Research Board, Washington D.C., also VSP WP 11-19, see http://​www.​vsp.​tu-berlin.​de/​publications (2012)
Zurück zum Zitat van Essen, H., Schroten, A., Otten, M., Sutter, D., Zandonella, Schreyer C, Maibach, R., M, Doll, C.: External costs of transport in Europe. Tech. rep, CE Delft (2011) van Essen, H., Schroten, A., Otten, M., Sutter, D., Zandonella, Schreyer C, Maibach, R., M, Doll, C.: External costs of transport in Europe. Tech. rep, CE Delft (2011)
Zurück zum Zitat Vickrey, W.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969) Vickrey, W.: Congestion theory and transport investment. Am. Econ. Rev. 59(2), 251–260 (1969)
Zurück zum Zitat Wang, J., Chi, L., Hu, X., Zhou, H.: Urban traffic congestion pricing model with the consideration of carbon emissions cost. Sustainability 6(2), 676–691 (2014). doi:10.3390/su6020676 CrossRef Wang, J., Chi, L., Hu, X., Zhou, H.: Urban traffic congestion pricing model with the consideration of carbon emissions cost. Sustainability 6(2), 676–691 (2014). doi:10.​3390/​su6020676 CrossRef
Zurück zum Zitat Weinreich, S., Rennings, K., Schlomann, B., Geßner, C., Engel, T.: External costs of road, rail and air transport—a bottom-up approach. ZEW Discussion Papers 98-06 (1998) Weinreich, S., Rennings, K., Schlomann, B., Geßner, C., Engel, T.: External costs of road, rail and air transport—a bottom-up approach. ZEW Discussion Papers 98-06 (1998)
Zurück zum Zitat Whitehead, J., Franklin, J.P., Washington, S.: The impact of a congestion pricing exemption on the demand for new energy efficient vehicles in Stockholm. Transp. Res. Part A Policy Pract. 70, 24–40 (2014). doi:10.1016/j.tra.2014.09.013 CrossRef Whitehead, J., Franklin, J.P., Washington, S.: The impact of a congestion pricing exemption on the demand for new energy efficient vehicles in Stockholm. Transp. Res. Part A Policy Pract. 70, 24–40 (2014). doi:10.​1016/​j.​tra.​2014.​09.​013 CrossRef
Metadaten
Titel
The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study
Publikationsdatum
22.12.2016
Erschienen in
Transportation / Ausgabe 3/2018
Print ISSN: 0049-4488
Elektronische ISSN: 1572-9435
DOI
https://doi.org/10.1007/s11116-016-9753-z

Weitere Artikel der Ausgabe 3/2018

Transportation 3/2018 Zur Ausgabe

    Premium Partner