Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 12/2010

01.12.2010 | Original Article

The effect of angulation in abdominal aortic aneurysms: fluid–structure interaction simulations of idealized geometries

verfasst von: Michalis Xenos, Yared Alemu, Dan Zamfir, Shmuel Einav, John J. Ricotta, Nicos Labropoulos, Apostolos Tassiopoulos, Danny Bluestein

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 12/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abdominal aortic aneurysm (AAA) represents a degenerative disease process of the abdominal aorta that results in dilation and permanent remodeling of the arterial wall. A fluid structure interaction (FSI) parametric study was conducted to evaluate the progression of aneurysmal disease and its possible implications on risk of rupture. Two parametric studies were conducted using (i) the iliac bifurcation angle and (ii) the AAA neck angulation. Idealized streamlined AAA geometries were employed. The simulations were carried out using both isotropic and anisotropic wall material models. The parameters were based on CT scans measurements obtained from a population of patients. The results indicate that the peak wall stresses increased with increasing iliac and neck inlet angles. Wall shear stress (WSS) and fluid pressure were analyzed and correlated with the wall stresses for both sets of studies. An adaptation response of a temporary reduction of the peak wall stresses seem to correlate to a certain extent with increasing iliac angles. For the neck angulation studies it appears that a breakdown from symmetric vortices at the AAA inlet into a single larger vortex significantly increases the wall stress. Our parametric FSI study demonstrates the adaptation response during aneurysmal disease progression and its possible effects on the AAA risk of rupture. This dependence on geometric parameters of the AAA can be used as an additional diagnostic tool to help clinicians reach informed decisions in establishing whether a risky surgical intervention is warranted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ADINA Manual (2009) Theory and modeling guide: ARD 09-7, pp 667–668 ADINA Manual (2009) Theory and modeling guide: ARD 09-7, pp 667–668
2.
Zurück zum Zitat Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112CrossRefPubMed Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46:1097–1112CrossRefPubMed
3.
Zurück zum Zitat Beebe HG, Jackson T, Pigott JP (1995) Aortic aneurysm morphology for planning endovascular aortic grafts: limitations of conventional imaging methods. J Endovasc Surg 2:139–148CrossRefPubMed Beebe HG, Jackson T, Pigott JP (1995) Aortic aneurysm morphology for planning endovascular aortic grafts: limitations of conventional imaging methods. J Endovasc Surg 2:139–148CrossRefPubMed
4.
Zurück zum Zitat Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng Trans ASME 118:280–286CrossRef Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng Trans ASME 118:280–286CrossRef
5.
Zurück zum Zitat Bluestein D, Dumont K, De Beule M, Ricotta J, Impellizzeri P, Verhegghe B, Verdonck P (2009) Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—FSI modelling. Comput Methods Biomech Biomed Eng 12:73–81 Bluestein D, Dumont K, De Beule M, Ricotta J, Impellizzeri P, Verhegghe B, Verdonck P (2009) Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—FSI modelling. Comput Methods Biomech Biomed Eng 12:73–81
6.
Zurück zum Zitat Bonert M, Leask RL, Butany J, Ethier CR, Myers JG, Johnston KW, Ojha M (2003) The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta. Biomed Eng Online 2:18CrossRefPubMed Bonert M, Leask RL, Butany J, Ethier CR, Myers JG, Johnston KW, Ojha M (2003) The relationship between wall shear stress distributions and intimal thickening in the human abdominal aorta. Biomed Eng Online 2:18CrossRefPubMed
7.
Zurück zum Zitat Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73:504–523 Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73:504–523
8.
Zurück zum Zitat Breeuwer M, de Putter S, Kose U, Speelman L, Visser K, Gerritsen F, Hoogeveen R, Krams R, van den Bosch H, Buth J, Gunther T, Wolters B, van Dam E, van de Vosse F (2008) Towards patient-specific risk assessment of abdominal aortic aneurysm. Med Biol Eng Comput 46:1085–1095CrossRefPubMed Breeuwer M, de Putter S, Kose U, Speelman L, Visser K, Gerritsen F, Hoogeveen R, Krams R, van den Bosch H, Buth J, Gunther T, Wolters B, van Dam E, van de Vosse F (2008) Towards patient-specific risk assessment of abdominal aortic aneurysm. Med Biol Eng Comput 46:1085–1095CrossRefPubMed
9.
10.
Zurück zum Zitat Di Martino ES, Vorp DA (2003) Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 31:804–809CrossRefPubMed Di Martino ES, Vorp DA (2003) Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 31:804–809CrossRefPubMed
11.
Zurück zum Zitat Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23:647–655CrossRefPubMed Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23:647–655CrossRefPubMed
12.
Zurück zum Zitat Doriot PA (2003) Some unusual considerations about vessel walls and wall stresses. J Theor Biol 221:133–141CrossRefPubMed Doriot PA (2003) Some unusual considerations about vessel walls and wall stresses. J Theor Biol 221:133–141CrossRefPubMed
13.
Zurück zum Zitat Doyle BJ, Callanan A, Burke PE, Grace PA, Walsh MT, Vorp DA, McGloughlin TM (2009) Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg 49:443–454CrossRefPubMed Doyle BJ, Callanan A, Burke PE, Grace PA, Walsh MT, Vorp DA, McGloughlin TM (2009) Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg 49:443–454CrossRefPubMed
14.
Zurück zum Zitat Fillinger MF, Racusin J, Baker RK, Cronenwett JL, Teutelink A, Schermerhorn ML, Zwolak RM, Powell RJ, Walsh DB, Rzucidlo EM (2004) Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J Vasc Surg 39:1243–1252CrossRefPubMed Fillinger MF, Racusin J, Baker RK, Cronenwett JL, Teutelink A, Schermerhorn ML, Zwolak RM, Powell RJ, Walsh DB, Rzucidlo EM (2004) Anatomic characteristics of ruptured abdominal aortic aneurysm on conventional CT scans: implications for rupture risk. J Vasc Surg 39:1243–1252CrossRefPubMed
15.
Zurück zum Zitat Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582CrossRef Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582CrossRef
16.
Zurück zum Zitat Fung YC (1991) What are the residual stresses doing in our blood vessels? Ann Biomed Eng 19:237–249CrossRefPubMed Fung YC (1991) What are the residual stresses doing in our blood vessels? Ann Biomed Eng 19:237–249CrossRefPubMed
17.
Zurück zum Zitat Fung YC (1993) Biomechanics, mechanical properties of living tissues, 2nd edn. Springer, New York Fung YC (1993) Biomechanics, mechanical properties of living tissues, 2nd edn. Springer, New York
18.
Zurück zum Zitat Gee MW, Forster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Method Biomed Eng 26:52–72CrossRef Gee MW, Forster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Method Biomed Eng 26:52–72CrossRef
19.
Zurück zum Zitat Guo X, Kono Y, Mattrey R, Kassab GS (2002) Morphometry and strain distribution of the C57BL/6 mouse aorta. Am J Physiol Heart Circ Physiol 283:H1829–H1837PubMed Guo X, Kono Y, Mattrey R, Kassab GS (2002) Morphometry and strain distribution of the C57BL/6 mouse aorta. Am J Physiol Heart Circ Physiol 283:H1829–H1837PubMed
20.
Zurück zum Zitat Hallin A, Bergqvist D, Holmberg L (2001) Literature review of surgical management of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 22:197–204CrossRefPubMed Hallin A, Bergqvist D, Holmberg L (2001) Literature review of surgical management of abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 22:197–204CrossRefPubMed
21.
Zurück zum Zitat Helderman F, Manoch IJ, Breeuwer M, Kose U, Schouten O, van Sambeek MR, Poldermans D, Pattynama PT, Wisselink W, van der Steen AF, Krams R (2008) A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness. Med Biol Eng Comput 46:1121–1127CrossRefPubMed Helderman F, Manoch IJ, Breeuwer M, Kose U, Schouten O, van Sambeek MR, Poldermans D, Pattynama PT, Wisselink W, van der Steen AF, Krams R (2008) A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness. Med Biol Eng Comput 46:1121–1127CrossRefPubMed
22.
Zurück zum Zitat Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC (2008) Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg 47:17–22CrossRefPubMed Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC (2008) Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg 47:17–22CrossRefPubMed
23.
Zurück zum Zitat Kleinstreuer C, Li ZH (2006) Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed Eng Online 5:19CrossRefPubMed Kleinstreuer C, Li ZH (2006) Analysis and computer program for rupture-risk prediction of abdominal aortic aneurysms. Biomed Eng Online 5:19CrossRefPubMed
24.
Zurück zum Zitat Lakatta EG, Mitchell JH, Pomerance A, Rowe GG (1987) Human aging: changes in structure and function. J Am Coll Cardiol 10:42A–47ACrossRefPubMed Lakatta EG, Mitchell JH, Pomerance A, Rowe GG (1987) Human aging: changes in structure and function. J Am Coll Cardiol 10:42A–47ACrossRefPubMed
25.
Zurück zum Zitat Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, Xu Y (2006) Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online 5:33CrossRefPubMed Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, Xu Y (2006) Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online 5:33CrossRefPubMed
26.
Zurück zum Zitat Li Z, Kleinstreuer C (2005) A new wall stress equation for aneurysm–rupture prediction. Ann Biomed Eng 33:209–213CrossRefPubMed Li Z, Kleinstreuer C (2005) A new wall stress equation for aneurysm–rupture prediction. Ann Biomed Eng 33:209–213CrossRefPubMed
27.
Zurück zum Zitat Li ZH, Kleinstreuer C (2007) A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid–structure interaction analysis. Eur J Mech B Fluids 26:615–631CrossRef Li ZH, Kleinstreuer C (2007) A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid–structure interaction analysis. Eur J Mech B Fluids 26:615–631CrossRef
28.
Zurück zum Zitat Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299CrossRefPubMed Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299CrossRefPubMed
29.
Zurück zum Zitat Papaharilaou Y, Ekaterinaris JA, Manousaki E, Katsamouris AN (2006) A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J Biomech 40:367–377CrossRefPubMed Papaharilaou Y, Ekaterinaris JA, Manousaki E, Katsamouris AN (2006) A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms. J Biomech 40:367–377CrossRefPubMed
30.
Zurück zum Zitat Paszkowiak JJ, Dardik A (2003) Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascular Surg 37:47–57CrossRefPubMed Paszkowiak JJ, Dardik A (2003) Arterial wall shear stress: observations from the bench to the bedside. Vasc Endovascular Surg 37:47–57CrossRefPubMed
31.
Zurück zum Zitat Powell J, Brady A, Brown L, Forbes J, Fowkes F, Greenhalgh R, Ruckley C (1998) Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Thompson SG UK Small Aneurysm Trial Participants. Lancet 352:1649–1655CrossRef Powell J, Brady A, Brown L, Forbes J, Fowkes F, Greenhalgh R, Ruckley C (1998) Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Thompson SG UK Small Aneurysm Trial Participants. Lancet 352:1649–1655CrossRef
32.
Zurück zum Zitat Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33:475–482CrossRefPubMed Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33:475–482CrossRefPubMed
33.
Zurück zum Zitat Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31:760–769CrossRefPubMed Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW (2000) Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31:760–769CrossRefPubMed
34.
Zurück zum Zitat Reneman RS, Arts T, Hoeks AP (2006) Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Discrepancies with theory. J Vasc Res 43:251–269CrossRefPubMed Reneman RS, Arts T, Hoeks AP (2006) Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Discrepancies with theory. J Vasc Res 43:251–269CrossRefPubMed
35.
Zurück zum Zitat Resch T, Ivancev K, Lindh M, Nirhov N, Nyman U, Lindblad B (1999) Abdominal aortic aneurysm morphology in candidates for endovascular repair evaluated with spiral computed tomography and digital subtraction angiography. J Endovasc Surg 6:227–232CrossRefPubMed Resch T, Ivancev K, Lindh M, Nirhov N, Nyman U, Lindblad B (1999) Abdominal aortic aneurysm morphology in candidates for endovascular repair evaluated with spiral computed tomography and digital subtraction angiography. J Endovasc Surg 6:227–232CrossRefPubMed
36.
Zurück zum Zitat Ricotta JJ, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D (2008) Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 46:1059–1068CrossRefPubMed Ricotta JJ, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D (2008) Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 46:1059–1068CrossRefPubMed
37.
Zurück zum Zitat Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J Biomech Eng 131:031001–031010CrossRefPubMed Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J Biomech Eng 131:031001–031010CrossRefPubMed
38.
Zurück zum Zitat Rivlin RS (1948) Large elastic deformations of isotropic materials. 1. Fundamental concepts. Philos Trans R Soc Lond A 240:459–508CrossRef Rivlin RS (1948) Large elastic deformations of isotropic materials. 1. Fundamental concepts. Philos Trans R Soc Lond A 240:459–508CrossRef
39.
Zurück zum Zitat Rodriguez JF, Ruiz C, Doblare M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130:021023CrossRefPubMed Rodriguez JF, Ruiz C, Doblare M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130:021023CrossRefPubMed
40.
Zurück zum Zitat Scotti CM, Finol EA (2007) Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study. Comput Struct 85:1097–1113CrossRef Scotti CM, Finol EA (2007) Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study. Comput Struct 85:1097–1113CrossRef
41.
Zurück zum Zitat Scotti CM, Shkolnik AD, Muluk SC, Finol EA (2005) Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online 4:64CrossRefPubMed Scotti CM, Shkolnik AD, Muluk SC, Finol EA (2005) Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online 4:64CrossRefPubMed
42.
Zurück zum Zitat Speelman L, Bohra A, Bosboom EM, Schurink GW, van de Vosse FN, Makaorun MS, Vorp DA (2007) Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 129:105–109CrossRefPubMed Speelman L, Bohra A, Bosboom EM, Schurink GW, van de Vosse FN, Makaorun MS, Vorp DA (2007) Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 129:105–109CrossRefPubMed
43.
Zurück zum Zitat Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Sicard GA, Pilgram TK, Yuan C (2005) Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomech Eng 127:1185–1194CrossRefPubMed Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Sicard GA, Pilgram TK, Yuan C (2005) Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomech Eng 127:1185–1194CrossRefPubMed
44.
Zurück zum Zitat Truijers M, Pol JA, Schultzekool LJ, van Sterkenburg SM, Fillinger MF, Blankensteijn JD (2007) Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 33:401–407CrossRefPubMed Truijers M, Pol JA, Schultzekool LJ, van Sterkenburg SM, Fillinger MF, Blankensteijn JD (2007) Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 33:401–407CrossRefPubMed
45.
Zurück zum Zitat Vande Geest JP, Sacks MS, Vorp DA (2006) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39:1324–1334CrossRef Vande Geest JP, Sacks MS, Vorp DA (2006) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39:1324–1334CrossRef
46.
Zurück zum Zitat Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA (2006) Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 34:1098–1106CrossRef Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA (2006) Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 34:1098–1106CrossRef
47.
Zurück zum Zitat Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA (2008) The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng 36:921–932CrossRef Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA (2008) The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng 36:921–932CrossRef
48.
Zurück zum Zitat Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796CrossRef Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796CrossRef
49.
50.
Zurück zum Zitat Wang GJ, Carpenter JP (2008) The Powerlink system for endovascular abdominal aortic aneurysm repair: six-year results. J Vasc Surg 48:535–545CrossRefPubMed Wang GJ, Carpenter JP (2008) The Powerlink system for endovascular abdominal aortic aneurysm repair: six-year results. J Vasc Surg 48:535–545CrossRefPubMed
51.
Zurück zum Zitat Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36:598–604CrossRefPubMed Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36:598–604CrossRefPubMed
52.
Zurück zum Zitat Wassef M, Upchurch GR Jr, Kuivaniemi H, Thompson RW, Tilson MD 3rd (2007) Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg 45:192–198CrossRefPubMed Wassef M, Upchurch GR Jr, Kuivaniemi H, Thompson RW, Tilson MD 3rd (2007) Challenges and opportunities in abdominal aortic aneurysm research. J Vasc Surg 45:192–198CrossRefPubMed
53.
Zurück zum Zitat Watton PN, Hill NA, Heil M (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3:98–113CrossRefPubMed Watton PN, Hill NA, Heil M (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3:98–113CrossRefPubMed
54.
Zurück zum Zitat Xenos M, Rambhia SH, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta JJ, Bluestein D (2010) Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng 38:3323–3337CrossRefPubMed Xenos M, Rambhia SH, Alemu Y, Einav S, Labropoulos N, Tassiopoulos A, Ricotta JJ, Bluestein D (2010) Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling. Ann Biomed Eng 38:3323–3337CrossRefPubMed
55.
Zurück zum Zitat Yang C, Bach RG, Zheng J, Naqa IE, Woodard PK, Teng Z, Billiar K, Tang D (2009) In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng 56:2420–2428CrossRefPubMed Yang C, Bach RG, Zheng J, Naqa IE, Woodard PK, Teng Z, Billiar K, Tang D (2009) In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng 56:2420–2428CrossRefPubMed
56.
Zurück zum Zitat Zankl AR, Schumacher H, Krumsdorf U, Katus HA, Jahn L, Tiefenbacher CP (2007) Pathology, natural history and treatment of abdominal aortic aneurysms. Clin Res Cardiol 96:140–151CrossRefPubMed Zankl AR, Schumacher H, Krumsdorf U, Katus HA, Jahn L, Tiefenbacher CP (2007) Pathology, natural history and treatment of abdominal aortic aneurysms. Clin Res Cardiol 96:140–151CrossRefPubMed
Metadaten
Titel
The effect of angulation in abdominal aortic aneurysms: fluid–structure interaction simulations of idealized geometries
verfasst von
Michalis Xenos
Yared Alemu
Dan Zamfir
Shmuel Einav
John J. Ricotta
Nicos Labropoulos
Apostolos Tassiopoulos
Danny Bluestein
Publikationsdatum
01.12.2010
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 12/2010
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-010-0714-y

Weitere Artikel der Ausgabe 12/2010

Medical & Biological Engineering & Computing 12/2010 Zur Ausgabe