Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2014

01.07.2014 | Symposium: Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys

The Effect of Nd on the Tension and Compression Deformation Behavior of Extruded Mg-1Mn (wt pct) at Temperatures Between 298 K and 523 K (25 °C and 250 °C)

verfasst von: Ajith Chakkedath, Jan Bohlen, Sangbong Yi, Dietmar Letzig, Zhe Chen, Carl J. Boehlert

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The tension and compression deformation behavior of extruded magnesium-1 wt pct manganese alloys with nominally 0.3 wt pct (MN10) and 1 wt pct neodymium (MN11) was studied over the temperature range of 298 K to 523 K (25 °C to 250 °C). Nd additions to Mg alloys tend to reduce the strong basal texture exhibited by conventional wrought Mg alloys and this work was intended to study the effect of Nd on the deformation behavior of Mg alloys. In situ tensile and compressive experiments were performed using a scanning electron microscopy, and electron backscatter diffraction was performed both before and after the deformation. A slip trace analysis technique was used to identify the distribution of the deformation systems as a function of strain, and based on this analysis and the texture of the undeformed samples, the critical resolved shear stress ratios between the deformation systems were estimated. In the case of MN11, the deformation behavior under tension at all temperatures was dominated by slip, while in compression, extension twinning was the major deformation mode. In tension at 323 K (50 °C), extension twinning, basal, prismatic 〈a〉, and pyramidal 〈c + a〉 slip were active in MN11. Much less extension twinning was observed at 423 K (150 °C), while basal slip and prismatic 〈a〉 slip were dominant and presented similar relative activities. At 523 K (250 °C), twinning was not observed, and basal slip controlled the deformation. With the reduction of Nd content, less slip deformation and more twinning were observed during the tensile deformation. However, like for MN11, the extent of twinning in MN10 decreased with increasing temperature and basal slip was the primary deformation mode at elevated temperatures. Extension twinning was the major deformation mode under compression for all test temperatures in MN10 and MN11. The tensile strength decreased with increasing temperature for both alloys, where MN10 was slightly stronger than MN11 at 323 K (50 °C), which was expected to be a result of the stronger basal texture exhibited by MN10 due to its lower Nd content. However, MN11 maintained its strength more at elevated temperatures compared with MN10, and this was explained to be a result of the greater Nd content.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs: JOM, 2008, vol. 60 (11), pp. 57-62.CrossRef M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs: JOM, 2008, vol. 60 (11), pp. 57-62.CrossRef
2.
Zurück zum Zitat M. Bamberger and G. Dehm: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 505-33.CrossRef M. Bamberger and G. Dehm: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 505-33.CrossRef
3.
Zurück zum Zitat B. L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302 (1), pp. 37-45.CrossRef B. L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302 (1), pp. 37-45.CrossRef
4.
Zurück zum Zitat H. Friedrich and S. Schumann: J. Mater. Process. Technol., 2001, vol. 117 (3), pp. 276-81.CrossRef H. Friedrich and S. Schumann: J. Mater. Process. Technol., 2001, vol. 117 (3), pp. 276-81.CrossRef
5.
Zurück zum Zitat I. Ulacia, N. V. Dudamell, F. Gálvez, S. Yi, M. T. Pérez-Prado, and I. Hurtado: Acta Mater., 2010, vol. 58 (8), pp. 2988-98.CrossRef I. Ulacia, N. V. Dudamell, F. Gálvez, S. Yi, M. T. Pérez-Prado, and I. Hurtado: Acta Mater., 2010, vol. 58 (8), pp. 2988-98.CrossRef
6.
Zurück zum Zitat Y. Chino, M. Kado, and M. Mabuchi: Mater. Sci. Eng. A, 2008, vol. 494 (1), pp. 343-49.CrossRef Y. Chino, M. Kado, and M. Mabuchi: Mater. Sci. Eng. A, 2008, vol. 494 (1), pp. 343-49.CrossRef
7.
Zurück zum Zitat Y. Chino, M. Kado, and M. Mabuchi: Acta Mater., 2008, vol. 56 (3), pp. 387-94.CrossRef Y. Chino, M. Kado, and M. Mabuchi: Acta Mater., 2008, vol. 56 (3), pp. 387-94.CrossRef
8.
Zurück zum Zitat J. Bohlen, M. R. Nürnberg, J. W. Senn, D. Letzig, and S. R. Agnew: Acta Mater., 2007, vol. 55 (6), pp. 2101-12.CrossRef J. Bohlen, M. R. Nürnberg, J. W. Senn, D. Letzig, and S. R. Agnew: Acta Mater., 2007, vol. 55 (6), pp. 2101-12.CrossRef
9.
Zurück zum Zitat S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. González-Martínez: Acta Mater., 2011, vol. 59 (2), pp. 429-39.CrossRef S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. González-Martínez: Acta Mater., 2011, vol. 59 (2), pp. 429-39.CrossRef
10.
Zurück zum Zitat L. W. F. Mackenzie and M. O. Pekguleryuz: Scripta Mater., 2008, vol. 59 (6), pp. 665-68.CrossRef L. W. F. Mackenzie and M. O. Pekguleryuz: Scripta Mater., 2008, vol. 59 (6), pp. 665-68.CrossRef
11.
Zurück zum Zitat N. Stanford, D. Atwell, and M. R. Barnett: Acta Mater., 2010, vol. 58 (20), pp. 6773-83.CrossRef N. Stanford, D. Atwell, and M. R. Barnett: Acta Mater., 2010, vol. 58 (20), pp. 6773-83.CrossRef
12.
Zurück zum Zitat L. Jiang, J. J. Jonas, and R. Mishra: Mater. Sci. Eng. A, 2011, vol. 528 (21), pp. 6596-6605.CrossRef L. Jiang, J. J. Jonas, and R. Mishra: Mater. Sci. Eng. A, 2011, vol. 528 (21), pp. 6596-6605.CrossRef
13.
Zurück zum Zitat N. Stanford: Mater. Sci. Eng. A, 2010, vol. 527 (10), pp. 2669-77.CrossRef N. Stanford: Mater. Sci. Eng. A, 2010, vol. 527 (10), pp. 2669-77.CrossRef
14.
Zurück zum Zitat R. Cottam, J. Robson, G. Lorimer, and B. Davis: Mater. Sci. Eng. A, 2008, vol. 485 (1), pp. 375-82.CrossRef R. Cottam, J. Robson, G. Lorimer, and B. Davis: Mater. Sci. Eng. A, 2008, vol. 485 (1), pp. 375-82.CrossRef
15.
Zurück zum Zitat J. Bohlen, S. Yi, D. Letzig, and K. U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527 (26), pp. 7092-98.CrossRef J. Bohlen, S. Yi, D. Letzig, and K. U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527 (26), pp. 7092-98.CrossRef
16.
Zurück zum Zitat R. K. Mishra, A. K. Gupta, P. Rama Rao, A. K. Sachdev, A. M. Kumar, and A. A. Luo: Scripta Mater., 2008, vol. 59 (5), pp. 562-65.CrossRef R. K. Mishra, A. K. Gupta, P. Rama Rao, A. K. Sachdev, A. M. Kumar, and A. A. Luo: Scripta Mater., 2008, vol. 59 (5), pp. 562-65.CrossRef
17.
Zurück zum Zitat N. Stanford, D. Atwell, A. Beer, C. Davis, and M. R. Barnett: Scripta Mater., 2008, vol. 59 (7), pp. 772-75.CrossRef N. Stanford, D. Atwell, A. Beer, C. Davis, and M. R. Barnett: Scripta Mater., 2008, vol. 59 (7), pp. 772-75.CrossRef
18.
Zurück zum Zitat J. D. Robson, A. M. Twier, G. W. Lorimer, and P. Rogers: Mater. Sci. Eng. A, 2011, vol. 528 (24), pp. 7247-56.CrossRef J. D. Robson, A. M. Twier, G. W. Lorimer, and P. Rogers: Mater. Sci. Eng. A, 2011, vol. 528 (24), pp. 7247-56.CrossRef
19.
Zurück zum Zitat T. Al-Samman and X. Li: Mater. Sci. Eng. A, 2011, vol. 528 (10), pp. 3809-22.CrossRef T. Al-Samman and X. Li: Mater. Sci. Eng. A, 2011, vol. 528 (10), pp. 3809-22.CrossRef
20.
Zurück zum Zitat C. J. Boehlert, Z. Chen, A. Chakkedath, I. Gutiérrez-Urrutia, J. Llorca, J. Bohlen, S. Yi, D. Letzig, and M. T. Pérez-Prado: Philos. Mag., 2013, vol. 93 (6), pp. 598-617.CrossRef C. J. Boehlert, Z. Chen, A. Chakkedath, I. Gutiérrez-Urrutia, J. Llorca, J. Bohlen, S. Yi, D. Letzig, and M. T. Pérez-Prado: Philos. Mag., 2013, vol. 93 (6), pp. 598-617.CrossRef
21.
Zurück zum Zitat E. A. Ball and P. B. Prangnell: Scripta Metall. Mater., 1994, vol. 31 (2), pp. 111-16.CrossRef E. A. Ball and P. B. Prangnell: Scripta Metall. Mater., 1994, vol. 31 (2), pp. 111-16.CrossRef
22.
Zurück zum Zitat J. Jain, W. J. Poole, C. W. Sinclair, and M. A. Gharghouri: Scripta Mater., 2010, vol. 62 (5), pp. 301-04.CrossRef J. Jain, W. J. Poole, C. W. Sinclair, and M. A. Gharghouri: Scripta Mater., 2010, vol. 62 (5), pp. 301-04.CrossRef
23.
Zurück zum Zitat C. J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado: Acta Mater., 2012, vol. 60 (4), pp. 1889-1904.CrossRef C. J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado: Acta Mater., 2012, vol. 60 (4), pp. 1889-1904.CrossRef
24.
Zurück zum Zitat ASTM International: Standard Test Methods for Determining Average Grain Size, ASTM E112-96E3, ASTM International, West Conshohocken, PA, 2004. ASTM International: Standard Test Methods for Determining Average Grain Size, ASTM E112-96E3, ASTM International, West Conshohocken, PA, 2004.
25.
Zurück zum Zitat J. E. Hilliard: Metal Prog., 1964, vol. 85 (5), pp. 99-102. J. E. Hilliard: Metal Prog., 1964, vol. 85 (5), pp. 99-102.
26.
Zurück zum Zitat C. J. Boehlert, H. Li, L. Wang, and B. Bartha: Adv. Mater. Process, 2010, vol. 168, pp. 41-45. C. J. Boehlert, H. Li, L. Wang, and B. Bartha: Adv. Mater. Process, 2010, vol. 168, pp. 41-45.
27.
Zurück zum Zitat H.Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp: Acta Mater., 2013, vol. 61 (20), pp. 7555–67. H.Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp: Acta Mater., 2013, vol. 61 (20), pp. 7555–67.
28.
Zurück zum Zitat M. T. Pérez-Prado, J. A. del Valle, and O. A. Ruano: Scripta Mater., 2004, vol. 50 (5), pp. 667-71.CrossRef M. T. Pérez-Prado, J. A. del Valle, and O. A. Ruano: Scripta Mater., 2004, vol. 50 (5), pp. 667-71.CrossRef
29.
Zurück zum Zitat S.-Y. Chang, T. Nakagaido, S.-K. Hong, D.H. Shin, and T. Sato: Mater. Trans. JIM, 2001, vol. 42 (7), pp. 1332-38.CrossRef S.-Y. Chang, T. Nakagaido, S.-K. Hong, D.H. Shin, and T. Sato: Mater. Trans. JIM, 2001, vol. 42 (7), pp. 1332-38.CrossRef
30.
Zurück zum Zitat I. P. Moreno, T. K. Nandy, J. W. Jones, J. E. Allison, and T. M. Pollock: Scripta Mater., 2003, vol. 48 (8), pp. 1029-34.CrossRef I. P. Moreno, T. K. Nandy, J. W. Jones, J. E. Allison, and T. M. Pollock: Scripta Mater., 2003, vol. 48 (8), pp. 1029-34.CrossRef
31.
Zurück zum Zitat M. R. Barnett: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1799-1806.CrossRef M. R. Barnett: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1799-1806.CrossRef
32.
Zurück zum Zitat E. W. Kelley and W. F. Hosford: Trans. Met. Soc. AIME, 1968, vol. 242 (1), pp. 5-13. E. W. Kelley and W. F. Hosford: Trans. Met. Soc. AIME, 1968, vol. 242 (1), pp. 5-13.
33.
Zurück zum Zitat R. E. Reed-Hill and W. D. Robertson: Acta Metall., 1957, vol. 5 (12), pp. 717-27.CrossRef R. E. Reed-Hill and W. D. Robertson: Acta Metall., 1957, vol. 5 (12), pp. 717-27.CrossRef
34.
Zurück zum Zitat R. E. Reed-Hill and W. D. Robertson: J. Metals Trans. AIME, 1957, vol. 220, pp. 496-502. R. E. Reed-Hill and W. D. Robertson: J. Metals Trans. AIME, 1957, vol. 220, pp. 496-502.
35.
Zurück zum Zitat A. Chapuis and J. H. Driver: Acta Mater., 2011, vol. 59 (5), pp. 1986-94.CrossRef A. Chapuis and J. H. Driver: Acta Mater., 2011, vol. 59 (5), pp. 1986-94.CrossRef
36.
Zurück zum Zitat C. Guillemer, M. Clavel, and G. Cailletaud: Int. J. Plast., 2011, vol. 27 (12), pp. 2068-84.CrossRef C. Guillemer, M. Clavel, and G. Cailletaud: Int. J. Plast., 2011, vol. 27 (12), pp. 2068-84.CrossRef
37.
Zurück zum Zitat H.L. Kim, J.S. Park, and Y.W. Chang: Mater. Sci. Eng. A, 2012, vol. 540, pp. 198-206.CrossRef H.L. Kim, J.S. Park, and Y.W. Chang: Mater. Sci. Eng. A, 2012, vol. 540, pp. 198-206.CrossRef
38.
Zurück zum Zitat E. Schmid: Proc. Int’l. Cong. Appl. Mech. Delft, 1924, p. 342. E. Schmid: Proc. Int’l. Cong. Appl. Mech. Delft, 1924, p. 342.
39.
Zurück zum Zitat E. Schmid and W. Boas: Plasticity of Crystals: With Special Reference to Metals, Chapman and Hall, London, 1935. E. Schmid and W. Boas: Plasticity of Crystals: With Special Reference to Metals, Chapman and Hall, London, 1935.
40.
Zurück zum Zitat M. R. Barnett, Z. Keshavarz, A. G. Beer, and X. Ma: Acta Mater., 2008, vol. 56 (1), pp. 5-15.CrossRef M. R. Barnett, Z. Keshavarz, A. G. Beer, and X. Ma: Acta Mater., 2008, vol. 56 (1), pp. 5-15.CrossRef
41.
Zurück zum Zitat S. Godet, L. Jiang, A. A. Luo, and J. J. Jonas: Scripta Mater., 2006, vol. 55 (11), pp. 1055-58.CrossRef S. Godet, L. Jiang, A. A. Luo, and J. J. Jonas: Scripta Mater., 2006, vol. 55 (11), pp. 1055-58.CrossRef
42.
Zurück zum Zitat Seong-Gu Hong, Sung Hyuk Park, and Chong Soo Lee: Acta Mater., 2010, vol. 58 (18), pp. 5873-85.CrossRef Seong-Gu Hong, Sung Hyuk Park, and Chong Soo Lee: Acta Mater., 2010, vol. 58 (18), pp. 5873-85.CrossRef
43.
Zurück zum Zitat S. Mu, J. J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043-53.CrossRef S. Mu, J. J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043-53.CrossRef
44.
Zurück zum Zitat C. N. Tomé, I. J. Beyerlein, J. Wang, and R. J. McCabe: JOM, 2011, vol. 63 (3), pp. 19-23.CrossRef C. N. Tomé, I. J. Beyerlein, J. Wang, and R. J. McCabe: JOM, 2011, vol. 63 (3), pp. 19-23.CrossRef
45.
Zurück zum Zitat I. J. Beyerlein and C. N. Tomé: Proc. R. Soc. A Math. Phys. Eng. Sci., 2010, vol. 466 (2121), pp. 2517-44.CrossRef I. J. Beyerlein and C. N. Tomé: Proc. R. Soc. A Math. Phys. Eng. Sci., 2010, vol. 466 (2121), pp. 2517-44.CrossRef
Metadaten
Titel
The Effect of Nd on the Tension and Compression Deformation Behavior of Extruded Mg-1Mn (wt pct) at Temperatures Between 298 K and 523 K (25 °C and 250 °C)
verfasst von
Ajith Chakkedath
Jan Bohlen
Sangbong Yi
Dietmar Letzig
Zhe Chen
Carl J. Boehlert
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-013-2143-7

Weitere Artikel der Ausgabe 8/2014

Metallurgical and Materials Transactions A 8/2014 Zur Ausgabe

Symposium: Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys

Control of the Mechanical Asymmetry in an Extruded MN11 Alloy by Static Annealing

Symposium: Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys

The ExoMet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites

Symposium: Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys

On the Structure, Transformation and Deformation of Long-Period Stacking Ordered Phases in Mg-Y-Zn Alloys

Symposium: Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys

Warm Forming of Mg Sheets: From Incremental to Electromagnetic Forming

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.