Skip to main content
Erschienen in: Fire Technology 3/2022

28.02.2022 | Original Paper

The Effect of Surrounding Water on the Burning Rates of Pool Fires

verfasst von: Vinay C. Raj, Harshad Shrigondekar, Bhaskar Dixit, H. S. Mukunda, S. V. Prabhu

Erschienen in: Fire Technology | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present paper investigates the effect of water surrounding the pan on the characteristics of an open pool fire. Experiments conducted on 2 m square pool fires surrounded by water indicated lower values for mass burning rate, adiabatic surface temperature, and heat flux. It was hypothesized that this decrease is due to the interaction between the pool fire and the water surrounding it. To test this hypothesis, experiments are conducted on a 0.5 m diesel pool fire with and without water surrounding the pan. For the case of water surrounding the pool fire, the mass burning rate decreased by 32% and the temperatures are found to be lower by approximately 100 °C in the core region of the pool fire when compared with experiments with no water surrounding the pool fire. The entrainment of water in the form of vapors, from the water surrounding the pan, into the fire results in a decrease in temperature and also changes the dynamics of the pool. This results in a decrease in the net heat feedback and hence the mass burning rate. The decrease in the mass of the surrounding water and the observation of boiling on its surface, support the claim. It is inferred that there is a decrease in the total heat flux to the cask in a pool fire that is surrounded by water. Thus, it is advisable that the pool fire testing of nuclear casks be carried out by ensuring no interaction between the pool fire and the water surrounding it.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat IAEA Safety Standards Series No. TS-R-1, (2005) Regulations for the Safe Transport of Radioactive Material. IAEA Safety Standards Series No. TS-R-1, (2005) Regulations for the Safe Transport of Radioactive Material.
2.
Zurück zum Zitat Uncapher, W.L. and Hohnstreiter, G.F., (1995) Radioactive material package testing capabilities at Sandia National Laboratories (No. SAND--95–0202C; CONF-951203--26). Sandia National Labs., Albuquerque, NM (United States). Uncapher, W.L. and Hohnstreiter, G.F., (1995) Radioactive material package testing capabilities at Sandia National Laboratories (No. SAND--95–0202C; CONF-951203--26). Sandia National Labs., Albuquerque, NM (United States).
3.
Zurück zum Zitat Van Sant, J.H., Carlson, R.W., Fischer, L.E. and Hovingh, J., (1993) A Guide for Thermal Testing Transport Packages for Radioactive Material—Hypothetical Accident Conditions. Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-110445. Van Sant, J.H., Carlson, R.W., Fischer, L.E. and Hovingh, J., (1993) A Guide for Thermal Testing Transport Packages for Radioactive Material—Hypothetical Accident Conditions. Lawrence Livermore National Laboratory, Livermore, CA, UCRL-ID-110445.
4.
Zurück zum Zitat Koski JA, Gritzo LA, Kent LA, Wix SD (1996) Actively cooled calorimeter measurements and environment characterization in a large pool fire. Fire Mater 20(2):69–78CrossRef Koski JA, Gritzo LA, Kent LA, Wix SD (1996) Actively cooled calorimeter measurements and environment characterization in a large pool fire. Fire Mater 20(2):69–78CrossRef
5.
Zurück zum Zitat Bainbridge BL, Keltner NR (1988) Heat transfer to large objects in large pool fires. J Hazard Mater 20:21–40CrossRef Bainbridge BL, Keltner NR (1988) Heat transfer to large objects in large pool fires. J Hazard Mater 20:21–40CrossRef
6.
Zurück zum Zitat Kramer MA, Greiner M, Koski JA, Lopez C, Suo-Anttila A (2003) Measurements of heat transfer to a massive cylindrical calorimeter engulfed in a circular pool fire. J Heat Transfer 125(1):110–117CrossRef Kramer MA, Greiner M, Koski JA, Lopez C, Suo-Anttila A (2003) Measurements of heat transfer to a massive cylindrical calorimeter engulfed in a circular pool fire. J Heat Transfer 125(1):110–117CrossRef
7.
Zurück zum Zitat Longenbaugh, R.S., Sanchez, L.C. and Mahoney, A.R., (1990) Thermal response of a small scale cask-like test article to three different high temperature environments. Sandia National Laboratories Report to Federal Rail Administration. DOT/FRA/ORD-90/01 Longenbaugh, R.S., Sanchez, L.C. and Mahoney, A.R., (1990) Thermal response of a small scale cask-like test article to three different high temperature environments. Sandia National Laboratories Report to Federal Rail Administration. DOT/FRA/ORD-90/01
8.
Zurück zum Zitat Koski JA, Gill W, Gritzo LA, Kent LA, Wix SD (1995) Characterization of indoor and outdoor pool fires with active calorimetry. ASME-Publications-HTD 304:79–88 Koski JA, Gill W, Gritzo LA, Kent LA, Wix SD (1995) Characterization of indoor and outdoor pool fires with active calorimetry. ASME-Publications-HTD 304:79–88
9.
Zurück zum Zitat Gregory JJ, Keltner NR, Mata R (1989) Thermal measurements in large pool fires. J Heat Transfer 111(2):446–454CrossRef Gregory JJ, Keltner NR, Mata R (1989) Thermal measurements in large pool fires. J Heat Transfer 111(2):446–454CrossRef
10.
Zurück zum Zitat del Valle, M.A., Kramer, M.A., Lopez, C., Suo-Anttila, A. and Greiner, M., (2007) October. Temperature response of a rail-cask-size pipe calorimeter in large scale pool fires. In proceedings of the 15th International Symposium on the Packaging and Transportation of Radioactive Materials (pp. 21–26) del Valle, M.A., Kramer, M.A., Lopez, C., Suo-Anttila, A. and Greiner, M., (2007) October. Temperature response of a rail-cask-size pipe calorimeter in large scale pool fires. In proceedings of the 15th International Symposium on the Packaging and Transportation of Radioactive Materials (pp. 21–26)
11.
Zurück zum Zitat Sudheer S, Wehrstedt KD, Prabhu SV (2016) Heat transfer to bodies engulfed in di-tert-butyl peroxide pool fires-Numerical simulations. J Loss Prev Process Ind 44:204–211CrossRef Sudheer S, Wehrstedt KD, Prabhu SV (2016) Heat transfer to bodies engulfed in di-tert-butyl peroxide pool fires-Numerical simulations. J Loss Prev Process Ind 44:204–211CrossRef
12.
Zurück zum Zitat Luketa A, Blanchat T (2015) The phoenix series large-scale methane gas burner experiments and liquid methane pool fires experiments on water. Combust Flame 162(12):4497–4513CrossRef Luketa A, Blanchat T (2015) The phoenix series large-scale methane gas burner experiments and liquid methane pool fires experiments on water. Combust Flame 162(12):4497–4513CrossRef
13.
Zurück zum Zitat ASTM Standard E 2230 (2002) Standard Practice for Thermal Qualification of Type B packages for Radioactive Material.ASTM International, West Conshohocken, PA ASTM Standard E 2230 (2002) Standard Practice for Thermal Qualification of Type B packages for Radioactive Material.ASTM International, West Conshohocken, PA
14.
Zurück zum Zitat Nakos, J.T. and Keltner, N.R., 1989 The radiative-convective partitioning of heat transfer to objects in large pool fires (No. SAND-89–0360C; CONF-890819–5). Sandia National Labs., Albuquerque, NM (USA) Nakos, J.T. and Keltner, N.R., 1989 The radiative-convective partitioning of heat transfer to objects in large pool fires (No. SAND-89–0360C; CONF-890819–5). Sandia National Labs., Albuquerque, NM (USA)
15.
Zurück zum Zitat Sudheer S, Prabhu SV (2012) Measurement of flame emissivity of hydrocarbon pool fires. Fire Technol 48(2):183–217CrossRef Sudheer S, Prabhu SV (2012) Measurement of flame emissivity of hydrocarbon pool fires. Fire Technol 48(2):183–217CrossRef
16.
Zurück zum Zitat Sudheer S, Prabhu SV (2013) Heat transfer in vertical casks engulfed in open pool fires. J Fire Sci 31(6):541–562CrossRef Sudheer S, Prabhu SV (2013) Heat transfer in vertical casks engulfed in open pool fires. J Fire Sci 31(6):541–562CrossRef
17.
Zurück zum Zitat Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19(4):251–261CrossRef Babrauskas V (1983) Estimating large pool fire burning rates. Fire Technol 19(4):251–261CrossRef
18.
Zurück zum Zitat Wickström U (2011) The adiabatic surface temperature and the plate thermometer. Fire Safety Science 10:1001–1011CrossRef Wickström U (2011) The adiabatic surface temperature and the plate thermometer. Fire Safety Science 10:1001–1011CrossRef
19.
Zurück zum Zitat Silvani X, Morandini F (2009) Fire spread experiments in the field: temperature and heat fluxes measurements. Fire Saf J 44(2):279–285CrossRef Silvani X, Morandini F (2009) Fire spread experiments in the field: temperature and heat fluxes measurements. Fire Saf J 44(2):279–285CrossRef
20.
Zurück zum Zitat Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons Bergman TL, Incropera FP, DeWitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons
21.
Zurück zum Zitat Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. J Fluids Eng 107:173–178CrossRef Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. J Fluids Eng 107:173–178CrossRef
22.
Zurück zum Zitat Rew PJ, Hulbert WG, Deaves DM (1997) Modelling of thermal radiation from external hydrocarbon pool fires. Process Saf Environ Prot 75(2):81–89CrossRef Rew PJ, Hulbert WG, Deaves DM (1997) Modelling of thermal radiation from external hydrocarbon pool fires. Process Saf Environ Prot 75(2):81–89CrossRef
23.
Zurück zum Zitat Muñoz M, Arnaldos J, Casal J, Planas E (2004) Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combust Flame 139(3):263–277CrossRef Muñoz M, Arnaldos J, Casal J, Planas E (2004) Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combust Flame 139(3):263–277CrossRef
24.
Zurück zum Zitat Sudheer S, Kumar L, Manjunath BS, Pasi A, Meenakshi G, Prabhu SV (2013) Fire safety distances for open pool fires. Infrared Phys Technol 61:265–273CrossRef Sudheer S, Kumar L, Manjunath BS, Pasi A, Meenakshi G, Prabhu SV (2013) Fire safety distances for open pool fires. Infrared Phys Technol 61:265–273CrossRef
25.
Zurück zum Zitat McCaffrey, B.J., (1979) Purely buoyant diffusion flames: some experimental results. Center for Fire Research, NBS. McCaffrey, B.J., (1979) Purely buoyant diffusion flames: some experimental results. Center for Fire Research, NBS.
26.
Zurück zum Zitat Koseki H (1989) Combustion properties of large liquid pool fires. Fire Technol 25(3):241–255CrossRef Koseki H (1989) Combustion properties of large liquid pool fires. Fire Technol 25(3):241–255CrossRef
27.
Zurück zum Zitat Richard J, Garo JP, Souil JM, Vantelon JP, Knorre VG (2003) Chemical and physical effects of water vapor addition on diffusion flames. Fire Saf J 38(6):569–587CrossRef Richard J, Garo JP, Souil JM, Vantelon JP, Knorre VG (2003) Chemical and physical effects of water vapor addition on diffusion flames. Fire Saf J 38(6):569–587CrossRef
28.
Zurück zum Zitat Nedelka, D., Moorhouse, J. and Tucker, R.F., (1989)The Montoir 35m diameter LNG pool fire experiments. Midlands Research Station Nedelka, D., Moorhouse, J. and Tucker, R.F., (1989)The Montoir 35m diameter LNG pool fire experiments. Midlands Research Station
29.
Zurück zum Zitat Zhang C, Atreya A, Lee K (1992) January Sooting structure of methane counterflow diffusion flames with preheated reactants and dilution by products of combustion. Symposium International on Combustion 24(1):1049–1057CrossRef Zhang C, Atreya A, Lee K (1992) January Sooting structure of methane counterflow diffusion flames with preheated reactants and dilution by products of combustion. Symposium International on Combustion 24(1):1049–1057CrossRef
30.
Zurück zum Zitat Atreya A, Crompton TODD, Suh JAEIL (2000) A study of the chemical and physical mechanisms of fire suppression by water. Fire Safety Science 6:493–504CrossRef Atreya A, Crompton TODD, Suh JAEIL (2000) A study of the chemical and physical mechanisms of fire suppression by water. Fire Safety Science 6:493–504CrossRef
31.
Zurück zum Zitat Rao VK, Bardon MF (1984) The effect of water on gas phase soot formation in laminar diffusion flames. Combust Flame 55(1):73–78CrossRef Rao VK, Bardon MF (1984) The effect of water on gas phase soot formation in laminar diffusion flames. Combust Flame 55(1):73–78CrossRef
32.
Zurück zum Zitat Xu H, Liu F, Sun S, Zhao Y, Meng S, Tang W (2017) Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combust Flame 177:67–78CrossRef Xu H, Liu F, Sun S, Zhao Y, Meng S, Tang W (2017) Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combust Flame 177:67–78CrossRef
33.
Zurück zum Zitat Liu F, Consalvi JL, Fuentes A (2014) Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame. Combust Flame 161(7):1724–1734CrossRef Liu F, Consalvi JL, Fuentes A (2014) Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame. Combust Flame 161(7):1724–1734CrossRef
Metadaten
Titel
The Effect of Surrounding Water on the Burning Rates of Pool Fires
verfasst von
Vinay C. Raj
Harshad Shrigondekar
Bhaskar Dixit
H. S. Mukunda
S. V. Prabhu
Publikationsdatum
28.02.2022
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2022
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-022-01217-2

Weitere Artikel der Ausgabe 3/2022

Fire Technology 3/2022 Zur Ausgabe