Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2021

01.02.2021

The effects of Ag+ and Al3+ substitution in (Cu1-xAgx)(In1-x Alx)S2 chalcopyrite nanoparticles synthesized by hydrothermal method: Study of microstructures and optical properties

verfasst von: Said Rahimi, S. Mohammad Mirkazemi, Ali beitollahi

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, Ag+ and Al3+ doped CuInS2 (CIS) nanoparticles were synthesized by a low-cost and non-vacuum hydrothermal method. The CuInS2 nanoparticles were synthesized by the stoichiometric ratio of (1Cu: 1In: 2S) using the hydrothermal method at 180℃ and for 16, 18 and 20 h. Afterward, Ag+ and Al3+ ions were doped with non-stoichiometric composition of (Cu1-xAgx)InS2, Cu(In1-xAlx)S2 (x = 0.1, 0.2, and 0.3), and (Cu1-xAgx)(In1-xAlx)S2 (x = 0.1). The phase evolution, microstructural, and optical properties have also been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–Vis spectroscopy techniques. The XRD results showed that the sample was prepared by the hydrothermal route at 180° C for 20 h was single-phase and no impurity phase was detected. However, some minor impurity phases (CuS and Cu9S5) were detected in the samples were synthesized at 180° C in 16 h and 18 h. The results show that the crystallite size of the synthesized nanoparticles of CIS at 16, 18, and 20 h are 26, 29, and 32 nm, respectively. The lattice parameters for the sample synthesized in 20 h were calculated to be 5.52 Å (a) and 11.11 Å (c). The FE-SEM micrographs showed that the pure CIS nanoparticles have flower-shaped morphology and the type and concentration of used dopants affect the morphology of the nanoparticles. The bandgap of single-phase CIS synthesized nanoparticles was 1.5 eV. However, the bandgap of (Cu0.9Ag0.1)InS2 and Cu(In0.9Al0.1)S2 was 1.4 eV and 1.70, respectively. The bandgap of (Cu0.9Ag0.1) (In0.9Al0.1)S2 was 2 eV.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aldakov, D., Lefrançois, A., Reiss, P.: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C. 1, 3756–3776 (2013)CrossRef Aldakov, D., Lefrançois, A., Reiss, P.: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C. 1, 3756–3776 (2013)CrossRef
Zurück zum Zitat Allouche, N., Kamoun, N., Jebbari, C.G., Kamoun Turki, N.: Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates. J. Alloys Compd. 501, 85–88 (2010)CrossRef Allouche, N., Kamoun, N., Jebbari, C.G., Kamoun Turki, N.: Influence of aluminum doping in CuInS2 prepared by spray pyrolysis on different substrates. J. Alloys Compd. 501, 85–88 (2010)CrossRef
Zurück zum Zitat Benbelgacem, J., Ben Marai, A., Mendil, R., Medjnoun, K., Djessas, K., Ben Ayadi, Z.: Synthesis of CuInS2 nanoparticles by solvothermal process using dimethylformamide as a solvent. J. Alloys Compd. 692, 966–971 (2017)CrossRef Benbelgacem, J., Ben Marai, A., Mendil, R., Medjnoun, K., Djessas, K., Ben Ayadi, Z.: Synthesis of CuInS2 nanoparticles by solvothermal process using dimethylformamide as a solvent. J. Alloys Compd. 692, 966–971 (2017)CrossRef
Zurück zum Zitat Brik, M.G.: First-principles study of the electronic and optical properties of CuXS2 (X= Al, Ga, In) and AgGaS2 ternary compounds. JPCS. 21, 485–502 (2009) Brik, M.G.: First-principles study of the electronic and optical properties of CuXS2 (X= Al, Ga, In) and AgGaS2 ternary compounds. JPCS. 21, 485–502 (2009)
Zurück zum Zitat Cui, Y., Ren, J., Chen, G., Qian, Y., Xie, Yi.: A simple route to synthesize MInS2 (M= Cu, Ag) nanorods from single-molecule precursors. Chem. Lett. 30, 236–237 (2001)CrossRef Cui, Y., Ren, J., Chen, G., Qian, Y., Xie, Yi.: A simple route to synthesize MInS2 (M= Cu, Ag) nanorods from single-molecule precursors. Chem. Lett. 30, 236–237 (2001)CrossRef
Zurück zum Zitat Delahoy, A.E., Guo, S., Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering, pp. 716–796. Wiley, United Kingdom (2011)CrossRef Delahoy, A.E., Guo, S., Luque, A., Hegedus, S.: Handbook of Photovoltaic Science and Engineering, pp. 716–796. Wiley, United Kingdom (2011)CrossRef
Zurück zum Zitat Deng, W., Yan, Z., Fang, Y., Wang, Y.: Effect of Al content on the performance of Cu(In1− xAlx)S2 synthesized by hydrothermal solution processing. J Mater Sci: Mater Electron 25, 2829–2834 (2014) Deng, W., Yan, Z., Fang, Y., Wang, Y.: Effect of Al content on the performance of Cu(In1− xAlx)S2 synthesized by hydrothermal solution processing. J Mater Sci: Mater Electron 25, 2829–2834 (2014)
Zurück zum Zitat Freitas, De., Jilian, N., Nogueira, A.F.: Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells. In: Nanoenergy, pp. 1–47. Springer, Berlin, Heidelberg (2013) Freitas, De., Jilian, N., Nogueira, A.F.: Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells. In: Nanoenergy, pp. 1–47. Springer, Berlin, Heidelberg (2013)
Zurück zum Zitat Heidariramsheh, M., Dabbagh, M.M., Mahdavi, S.M., Beitollahi, A.: Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach. Mater. Sci. Semicond. Process. 121, 105401 (2020)CrossRef Heidariramsheh, M., Dabbagh, M.M., Mahdavi, S.M., Beitollahi, A.: Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach. Mater. Sci. Semicond. Process. 121, 105401 (2020)CrossRef
Zurück zum Zitat Kavcar, N.: Study of the sub-bandgap absorption and the optical transitions in CuInSe2 polycrystalline thin films. Sol. Energy Mater. Sol. Cells. 52, 183–195 (1998)CrossRef Kavcar, N.: Study of the sub-bandgap absorption and the optical transitions in CuInSe2 polycrystalline thin films. Sol. Energy Mater. Sol. Cells. 52, 183–195 (1998)CrossRef
Zurück zum Zitat Kim, Sung Jin. Nanostructured photovoltaic devices for next generation solar cell. State University of New York at Buffalo, 2008, 1–10. Kim, Sung Jin. Nanostructured photovoltaic devices for next generation solar cell. State University of New York at Buffalo, 2008, 1–10.
Zurück zum Zitat Partain, L.D., Fraas, L.M. (eds.): Solar cells and their applications, pp. 45–65. Hoboken, New Jersey (2010) Partain, L.D., Fraas, L.M. (eds.): Solar cells and their applications, pp. 45–65. Hoboken, New Jersey (2010)
Zurück zum Zitat Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides : A mBJLDA approach. J. Alloys Compd. 518, 74–79 (2012)CrossRef Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides : A mBJLDA approach. J. Alloys Compd. 518, 74–79 (2012)CrossRef
Zurück zum Zitat Tadjarodi, A., Cheshmekhavar, A.H., Imani, M.: Preparation of AgInS2 nanoparticles by a facile microwave Heating technique; study of effective parameters, optical and photovoltaic characteristics. Appl. Surf. Sci. 263, 449–456 (2012)ADSCrossRef Tadjarodi, A., Cheshmekhavar, A.H., Imani, M.: Preparation of AgInS2 nanoparticles by a facile microwave Heating technique; study of effective parameters, optical and photovoltaic characteristics. Appl. Surf. Sci. 263, 449–456 (2012)ADSCrossRef
Zurück zum Zitat Yao, J., Rudyk, B.W., Brunetta, C.D., Knorr, K.B., Figore, H.A., Mar, A., Aitken, J.A.: Mn incorporation in CuInS2 chalcopyrites: Structure, magnetism and optical properties. Mater. Chem. Phys. 136, 415–423 (2012)CrossRef Yao, J., Rudyk, B.W., Brunetta, C.D., Knorr, K.B., Figore, H.A., Mar, A., Aitken, J.A.: Mn incorporation in CuInS2 chalcopyrites: Structure, magnetism and optical properties. Mater. Chem. Phys. 136, 415–423 (2012)CrossRef
Metadaten
Titel
The effects of Ag+ and Al3+ substitution in (Cu1-xAgx)(In1-x Alx)S2 chalcopyrite nanoparticles synthesized by hydrothermal method: Study of microstructures and optical properties
verfasst von
Said Rahimi
S. Mohammad Mirkazemi
Ali beitollahi
Publikationsdatum
01.02.2021
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2021
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-021-02753-x

Weitere Artikel der Ausgabe 2/2021

Optical and Quantum Electronics 2/2021 Zur Ausgabe