Skip to main content
Erschienen in: Journal of Nanoparticle Research 5/2010

01.06.2010 | Research Paper

The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles

verfasst von: Thomas B. Scott, Michelle Dickinson, Richard A. Crane, Olga Riba, Gareth M. Hughes, Geoffrey C. Allen

Erschienen in: Journal of Nanoparticle Research | Ausgabe 5/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to increase the longevity of contaminant retention, a method is sought to improve the corrosion resistance of iron nanoparticles (INP) used for remediation of contaminated water and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10−8 mbar) at 500 °C on the bulk and surface chemistry of INP. The particle size did not change significantly as a result of annealing but the surface oxide thickness decreased from an average of 3–4 nm to 2 nm. BET analysis recorded a decrease in INP surface area from 19.0 to 4.8 m2 g−1, consistent with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of poorly crystalline iron to bcc α-Fe and Fe2B phases. X-ray photoelectron spectroscopy (XPS) indicated a change in the surface oxide stoichiometry from magnetite (Fe3O4) towards wüstite (FeO) and the migration of boron and carbon to the particle surfaces. The improved core crystallinity and the presence of passivating impurity phases at the INP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INP for environmental applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen GC, Curtis MT, Hooper AJ, Tucker MJ (1974) X-ray photoelectron-spectroscopy of iron-oxygen systems. J Chem Soc Dalton Trans 14:1525–1530CrossRef Allen GC, Curtis MT, Hooper AJ, Tucker MJ (1974) X-ray photoelectron-spectroscopy of iron-oxygen systems. J Chem Soc Dalton Trans 14:1525–1530CrossRef
Zurück zum Zitat Alowitz MJ, Scherer M (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306CrossRefPubMed Alowitz MJ, Scherer M (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306CrossRefPubMed
Zurück zum Zitat Bigg T, Judd SJ (2000) Zero-valent iron for water treatment. Environ Technol 21:661–670CrossRef Bigg T, Judd SJ (2000) Zero-valent iron for water treatment. Environ Technol 21:661–670CrossRef
Zurück zum Zitat Bonin PML, Jedral W, Odziemkowski MS, Gillham RW (2000) Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater. Corros Sci 42:1921–1939CrossRef Bonin PML, Jedral W, Odziemkowski MS, Gillham RW (2000) Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater. Corros Sci 42:1921–1939CrossRef
Zurück zum Zitat Burke AR, Brown CR, Bowling WC et al (1988) Ignition mechanism of the titanium boron pyrotechnic mixture. Surf Interface Anal 11:353–358CrossRef Burke AR, Brown CR, Bowling WC et al (1988) Ignition mechanism of the titanium boron pyrotechnic mixture. Surf Interface Anal 11:353–358CrossRef
Zurück zum Zitat Callister WD (2003) Materials science and engineering: an introduction. Wiley International Press, NJ Callister WD (2003) Materials science and engineering: an introduction. Wiley International Press, NJ
Zurück zum Zitat Cao JS, Elliott D, Zhang WJJ (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506CrossRef Cao JS, Elliott D, Zhang WJJ (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506CrossRef
Zurück zum Zitat Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144:334–339CrossRefPubMed Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144:334–339CrossRefPubMed
Zurück zum Zitat Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311CrossRefPubMed Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311CrossRefPubMed
Zurück zum Zitat Choi Ch, Dong X, Kim B (2001) Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation. Mater Trans 42:2046–2049CrossRef Choi Ch, Dong X, Kim B (2001) Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation. Mater Trans 42:2046–2049CrossRef
Zurück zum Zitat Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim
Zurück zum Zitat Dehlinger AS, Pierson JF, Roman A, Ph Bauer (2003) Properties of iron boride films prepared by magnetron sputtering. Surf Coat Technol 174–175:331–337CrossRef Dehlinger AS, Pierson JF, Roman A, Ph Bauer (2003) Properties of iron boride films prepared by magnetron sputtering. Surf Coat Technol 174–175:331–337CrossRef
Zurück zum Zitat Elihn K, Otten F, Boman M et al (1999) Nanoparticle formation by laser-assisted photolysis of ferrocene. Nanostruct Mater 12:79–82CrossRef Elihn K, Otten F, Boman M et al (1999) Nanoparticle formation by laser-assisted photolysis of ferrocene. Nanostruct Mater 12:79–82CrossRef
Zurück zum Zitat Elliott DW, Zhang W (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefPubMed Elliott DW, Zhang W (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefPubMed
Zurück zum Zitat Glazier R, Venkatakrishnan R, Gheorghiu F et al (2003) Nanotechnology takes root. Civil Eng 73:64–69 Glazier R, Venkatakrishnan R, Gheorghiu F et al (2003) Nanotechnology takes root. Civil Eng 73:64–69
Zurück zum Zitat Grovesnor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRef Grovesnor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRef
Zurück zum Zitat Joo SH, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268CrossRefPubMed Joo SH, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268CrossRefPubMed
Zurück zum Zitat Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefPubMed Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefPubMed
Zurück zum Zitat Karlsson A, Deppert K, Wacaser A et al (2005) Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl Phys A A80:1579–1583CrossRefADS Karlsson A, Deppert K, Wacaser A et al (2005) Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl Phys A A80:1579–1583CrossRefADS
Zurück zum Zitat Koifman IS, Egorshina TV, Laskova GV (1969) X-ray diffraction analysis of borocementite. Metalloved Term Obrab Metall 2:59–60 Koifman IS, Egorshina TV, Laskova GV (1969) X-ray diffraction analysis of borocementite. Metalloved Term Obrab Metall 2:59–60
Zurück zum Zitat Krämer A, Leutenecker R, Aubertin F, Gonser U (1994) Amorphization of armco iron by boron implantation and subsequent crystallization by heat-treatment—a GEMS, X-ray and ultramicrohardness study. Hyperfine Interact 94:2367–2372CrossRefADS Krämer A, Leutenecker R, Aubertin F, Gonser U (1994) Amorphization of armco iron by boron implantation and subsequent crystallization by heat-treatment—a GEMS, X-ray and ultramicrohardness study. Hyperfine Interact 94:2367–2372CrossRefADS
Zurück zum Zitat Kuhn LT, Bojesen A, Timmermann L et al (2002) Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condens Matter 14:13551–13567CrossRefADS Kuhn LT, Bojesen A, Timmermann L et al (2002) Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condens Matter 14:13551–13567CrossRefADS
Zurück zum Zitat Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem 111:6939–6946 Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem 111:6939–6946
Zurück zum Zitat Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047CrossRef Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047CrossRef
Zurück zum Zitat Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A 191:97–105CrossRef Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A 191:97–105CrossRef
Zurück zum Zitat Liu Y, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefPubMed Liu Y, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefPubMed
Zurück zum Zitat Lucci A, Venturello G (1971) Comments on the condition of boron in α-iron. Scripta Metall 5:17–24CrossRef Lucci A, Venturello G (1971) Comments on the condition of boron in α-iron. Scripta Metall 5:17–24CrossRef
Zurück zum Zitat McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron-oxides. Anal Chem 49:1521–1529CrossRef McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron-oxides. Anal Chem 49:1521–1529CrossRef
Zurück zum Zitat Merlin J, Merle P, Garnier S et al (2004) Experimental determination of the carbon solubility limit in ferritic steels. Metal Mater Trans A 35A:1655–1661CrossRef Merlin J, Merle P, Garnier S et al (2004) Experimental determination of the carbon solubility limit in ferritic steels. Metal Mater Trans A 35A:1655–1661CrossRef
Zurück zum Zitat Miehr R, Tratnyek PG, Bandstra JZ et al (2004) Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate. Environ Sci Technol 38:139–147CrossRefPubMed Miehr R, Tratnyek PG, Bandstra JZ et al (2004) Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate. Environ Sci Technol 38:139–147CrossRefPubMed
Zurück zum Zitat Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934CrossRef Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934CrossRef
Zurück zum Zitat Moura FCC, Oliveira GC, Araujo MH et al (2005) Formation of highly reactive species at the interface Fe degrees-iron oxides particles by mechanical alloying and thermal treatment: potential application in environmental remediation processes. Chem Lett 34:1172–1173CrossRef Moura FCC, Oliveira GC, Araujo MH et al (2005) Formation of highly reactive species at the interface Fe degrees-iron oxides particles by mechanical alloying and thermal treatment: potential application in environmental remediation processes. Chem Lett 34:1172–1173CrossRef
Zurück zum Zitat Nurmi JT, Tratnyek PG, Sarathy V et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRefPubMed Nurmi JT, Tratnyek PG, Sarathy V et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRefPubMed
Zurück zum Zitat Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef
Zurück zum Zitat Ponder SM, Darab JG, Bucher J et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRef Ponder SM, Darab JG, Bucher J et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRef
Zurück zum Zitat Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057CrossRefADS Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057CrossRefADS
Zurück zum Zitat Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRef Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRef
Zurück zum Zitat Scott TB (2005) Sorption of uranium onto iron bearing minerals. PhD Thesis, University of Bristol Scott TB (2005) Sorption of uranium onto iron bearing minerals. PhD Thesis, University of Bristol
Zurück zum Zitat Scott TB, Allen GC, Heard PJ, Randall MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646CrossRefADS Scott TB, Allen GC, Heard PJ, Randall MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646CrossRefADS
Zurück zum Zitat Shimotori T, Nuxoll EE, Cussler EL, Arnold WA (2004) A polymer membrane containing Fe0 as a contaminant barrier. Environ Sci Technol 38:2264–2270CrossRefPubMed Shimotori T, Nuxoll EE, Cussler EL, Arnold WA (2004) A polymer membrane containing Fe0 as a contaminant barrier. Environ Sci Technol 38:2264–2270CrossRefPubMed
Zurück zum Zitat Signorini L, Pasquini L, Savini L et al (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys Rev B 68:195423CrossRefADS Signorini L, Pasquini L, Savini L et al (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys Rev B 68:195423CrossRefADS
Zurück zum Zitat Sun YP, Li XQ, Cao J et al (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRefPubMed Sun YP, Li XQ, Cao J et al (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRefPubMed
Zurück zum Zitat Valet P, Carel C (1989) The Fe-O (iron-oxygen) phase diagram in the range of the nonstoichiometric monoxide and magnetite at the Fe-rich limit: reduction diagrams. J Phase Equilib 10(3):209–218 Valet P, Carel C (1989) The Fe-O (iron-oxygen) phase diagram in the range of the nonstoichiometric monoxide and magnetite at the Fe-rich limit: reduction diagrams. J Phase Equilib 10(3):209–218
Zurück zum Zitat Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRef Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRef
Zurück zum Zitat Wriedt HA (1991) The Fe-O (iron-oxygen) system. J Phase Equilib 12:170–200CrossRef Wriedt HA (1991) The Fe-O (iron-oxygen) system. J Phase Equilib 12:170–200CrossRef
Zurück zum Zitat Zaera F (1989) A thermal desorption and X-ray photoelectron spectroscopy study of the surface chemistry of iron pentacarbonyl. J Vac Sci Technol A 7:640–645CrossRefADS Zaera F (1989) A thermal desorption and X-ray photoelectron spectroscopy study of the surface chemistry of iron pentacarbonyl. J Vac Sci Technol A 7:640–645CrossRefADS
Zurück zum Zitat Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. Nanopart Res 4:323–332CrossRef Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. Nanopart Res 4:323–332CrossRef
Zurück zum Zitat Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRef Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRef
Metadaten
Titel
The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles
verfasst von
Thomas B. Scott
Michelle Dickinson
Richard A. Crane
Olga Riba
Gareth M. Hughes
Geoffrey C. Allen
Publikationsdatum
01.06.2010
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 5/2010
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9732-9

Weitere Artikel der Ausgabe 5/2010

Journal of Nanoparticle Research 5/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.