Skip to main content
Erschienen in: International Journal of Steel Structures 5/2018

30.04.2018

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge–Track Interaction

verfasst von: Anaphat Manovachirasan, Songsak Suthasupradit, Jun-Hyeok Choi, Bum-Joon Kim, Ki-Du Kim

Erschienen in: International Journal of Steel Structures | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track–bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including ‘temperature change’, ‘bending of the supporting structure’, and ‘braking’ of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Battini, J. M., & Mahir, U. K. (2011). A simple finite element to consider the non-linear influence of the ballast on vibrations of railway bridges. Engineering Structures, 33, 2597–2602.CrossRef Battini, J. M., & Mahir, U. K. (2011). A simple finite element to consider the non-linear influence of the ballast on vibrations of railway bridges. Engineering Structures, 33, 2597–2602.CrossRef
Zurück zum Zitat Dosa, A., & Unggureanu, V. V. (2007). Discrete model for the stability of continuous welded rail. Transportation Infrastructure Engineering, 4, 25–34. Dosa, A., & Unggureanu, V. V. (2007). Discrete model for the stability of continuous welded rail. Transportation Infrastructure Engineering, 4, 25–34.
Zurück zum Zitat Guo, Y., Yu, Z., & Shi, H. (2015). Effect of rail thermal stress on the dynamic response of vehicle and track. Vehicle System Dynamic, 53, 30–50.CrossRef Guo, Y., Yu, Z., & Shi, H. (2015). Effect of rail thermal stress on the dynamic response of vehicle and track. Vehicle System Dynamic, 53, 30–50.CrossRef
Zurück zum Zitat Kerr, A. (1976). An analysis of thermal track buckling in the lateral plane. Acta Mechanica, 30(1–2), 76–285. Kerr, A. (1976). An analysis of thermal track buckling in the lateral plane. Acta Mechanica, 30(1–2), 76–285.
Zurück zum Zitat Kim, K. D. (2007). XFINAS 3.0. theory, example, reference and user manual, www.x-structure.com. on vibrations of railway bridges. Engineering Structures, 33, 2597–2602. Kim, K. D. (2007). XFINAS 3.0. theory, example, reference and user manual, www.​x-structure.​com. on vibrations of railway bridges. Engineering Structures, 33, 2597–2602.
Zurück zum Zitat Kish, A., Samavedam, G., & Jeong, D. (1982). Analysis of thermal buckling tests on U.S. railroads, FRA/ORD-82/45, Washington, D.C., USA. Kish, A., Samavedam, G., & Jeong, D. (1982). Analysis of thermal buckling tests on U.S. railroads, FRA/ORD-82/45, Washington, D.C., USA.
Zurück zum Zitat Kish, A., Samavedam, G., & Jeong, D. (1985). Influence of vehicle induced loads on the lateral stability of CWR track, DOT/FRA/ORD-85/03, Washington, D.C., USA. Kish, A., Samavedam, G., & Jeong, D. (1985). Influence of vehicle induced loads on the lateral stability of CWR track, DOT/FRA/ORD-85/03, Washington, D.C., USA.
Zurück zum Zitat Lei, X., & Feng, Q. (2004). Analysis of stability of continuously welded rail track with finite elements. Proceedings of the Institution of Mechanical Engineers, 3, 225–234.CrossRef Lei, X., & Feng, Q. (2004). Analysis of stability of continuously welded rail track with finite elements. Proceedings of the Institution of Mechanical Engineers, 3, 225–234.CrossRef
Zurück zum Zitat Lim, N. H., Han, S. Y., Han, T. H., & Kang, Y. J. (2008). Parametric study on stability of continuous welded rail track-ballast resistance and track irregularity. Steel Structures, 8, 171–181. Lim, N. H., Han, S. Y., Han, T. H., & Kang, Y. J. (2008). Parametric study on stability of continuous welded rail track-ballast resistance and track irregularity. Steel Structures, 8, 171–181.
Zurück zum Zitat Lim, N. H., Park, N. H., & Kang, Y. J. (2003). Stability of continuously welded rail track. Computers & Structures, 81, 2219–2236.CrossRef Lim, N. H., Park, N. H., & Kang, Y. J. (2003). Stability of continuously welded rail track. Computers & Structures, 81, 2219–2236.CrossRef
Zurück zum Zitat Nguyen, D. V., Kim, K. D., & Warnitchai, P. (2009). Simulation procedure for vehicle–substructure dynamic interactions and wheel movements using linearized wheel–rail interfaces. Finite Element Analysis and Design, 45(5), 341–356.CrossRef Nguyen, D. V., Kim, K. D., & Warnitchai, P. (2009). Simulation procedure for vehicle–substructure dynamic interactions and wheel movements using linearized wheel–rail interfaces. Finite Element Analysis and Design, 45(5), 341–356.CrossRef
Zurück zum Zitat Popp, K., Kruse, H., & Kaiser, I. (1999). Vehicle–track dynamics in the mid-frequency range. Vehicle System Dynamics, 31, 423–464.CrossRef Popp, K., Kruse, H., & Kaiser, I. (1999). Vehicle–track dynamics in the mid-frequency range. Vehicle System Dynamics, 31, 423–464.CrossRef
Zurück zum Zitat Ruge, P., & Birk, C. (2007). Longitudinal forces in continuously welded rails on bridges due to nonlinear track–bridge interaction. Computers & Structure, 85, 458–475.CrossRef Ruge, P., & Birk, C. (2007). Longitudinal forces in continuously welded rails on bridges due to nonlinear track–bridge interaction. Computers & Structure, 85, 458–475.CrossRef
Zurück zum Zitat Ruge, P., Widarda, D. R., Schmalzlin, G., & Bagayoko, L. (2009). Longitudinal track–bridge interaction due to sudden change of coupling interface. Computers & Structures, 87, 47–58.CrossRef Ruge, P., Widarda, D. R., Schmalzlin, G., & Bagayoko, L. (2009). Longitudinal track–bridge interaction due to sudden change of coupling interface. Computers & Structures, 87, 47–58.CrossRef
Zurück zum Zitat Samavedam, G. (1979). Buckling and post buckling analysis of CWR in the lateral plane, Technical Note TN-TS-34, British Railways Board. Samavedam, G. (1979). Buckling and post buckling analysis of CWR in the lateral plane, Technical Note TN-TS-34, British Railways Board.
Zurück zum Zitat Samavedam, G., Kish, A., & Jeong, D. (1983). Parametric studies on lateral stability of welded rail track, DOT/FRA/ORD-83/07, Washington, D.C., USA. Samavedam, G., Kish, A., & Jeong, D. (1983). Parametric studies on lateral stability of welded rail track, DOT/FRA/ORD-83/07, Washington, D.C., USA.
Zurück zum Zitat Samavedam, G., Kish, A., Purple, A., & Schoengart, J. (1993). Parametric analysis and safety concepts of CWR track buckling, DOT/FRA/ORD-93/26, Washington, D.C., USA. Samavedam, G., Kish, A., Purple, A., & Schoengart, J. (1993). Parametric analysis and safety concepts of CWR track buckling, DOT/FRA/ORD-93/26, Washington, D.C., USA.
Zurück zum Zitat Sung, W. P., Shim, M. H., Lin, C. I., & Go, C. G. (2005). The critical loading for lateral buckling of continuous welded rail. Journal of Zhejiang University Science, 6A(8), 878–885.CrossRef Sung, W. P., Shim, M. H., Lin, C. I., & Go, C. G. (2005). The critical loading for lateral buckling of continuous welded rail. Journal of Zhejiang University Science, 6A(8), 878–885.CrossRef
Metadaten
Titel
The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge–Track Interaction
verfasst von
Anaphat Manovachirasan
Songsak Suthasupradit
Jun-Hyeok Choi
Bum-Joon Kim
Ki-Du Kim
Publikationsdatum
30.04.2018
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 5/2018
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-018-0058-2

Weitere Artikel der Ausgabe 5/2018

International Journal of Steel Structures 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.