Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. The Evolution and the History of Current Conveyors

verfasst von : Raj Senani, D. R. Bhaskar, A. K. Singh

Erschienen in: Current Conveyors

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A historical account about the origin of Current Conveyors is given and important developments in the area, taken place during the past four decades have been highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Smith KC, Sedra A (1968) The current conveyor-a new circuit building block. Proc IEEE 56:1368–1369CrossRef Smith KC, Sedra A (1968) The current conveyor-a new circuit building block. Proc IEEE 56:1368–1369CrossRef
2.
Zurück zum Zitat Smith KC, Sedra A (1969) A new simple wide-band current-measuring device. IEEE Trans Instrum Meas 18:125–128CrossRef Smith KC, Sedra A (1969) A new simple wide-band current-measuring device. IEEE Trans Instrum Meas 18:125–128CrossRef
3.
Zurück zum Zitat Sedra A, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circ Theor 17:132–134CrossRef Sedra A, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circ Theor 17:132–134CrossRef
4.
Zurück zum Zitat Smith KC, Sedra A (1970) Realization of the Chua family of new nonlinear network elements using the current conveyor. IEEE Trans Circ Theor 17:137–139CrossRef Smith KC, Sedra A (1970) Realization of the Chua family of new nonlinear network elements using the current conveyor. IEEE Trans Circ Theor 17:137–139CrossRef
5.
Zurück zum Zitat Black GGA, Friedmann RT, Sedra AS (1971) Gyrator implementation with integrable current conveyors. IEEE J Solid State Circ 6:396–399CrossRef Black GGA, Friedmann RT, Sedra AS (1971) Gyrator implementation with integrable current conveyors. IEEE J Solid State Circ 6:396–399CrossRef
6.
Zurück zum Zitat Bakhtiar MS, Aronhime P (1978) A current conveyor realization using operational amplifiers. Int J Electron 45:283–288CrossRef Bakhtiar MS, Aronhime P (1978) A current conveyor realization using operational amplifiers. Int J Electron 45:283–288CrossRef
7.
Zurück zum Zitat Senani R (1980) Novel circuit implementation of current conveyors using an O.A. and an O.T.A. Electron Lett 16:2–3CrossRef Senani R (1980) Novel circuit implementation of current conveyors using an O.A. and an O.T.A. Electron Lett 16:2–3CrossRef
8.
Zurück zum Zitat Huertas JL (1980) Circuit implementation of current conveyor. Electron Lett 16:225–226CrossRef Huertas JL (1980) Circuit implementation of current conveyor. Electron Lett 16:225–226CrossRef
9.
Zurück zum Zitat Senani R (1979) Novel active RC circuit for floating-inductor simulation. Electron Lett 15:679–680CrossRef Senani R (1979) Novel active RC circuit for floating-inductor simulation. Electron Lett 15:679–680CrossRef
10.
Zurück zum Zitat Singh V (1979) A new active—RC circuit realization of floating inductance. Proc IEEE 67:1659–1660CrossRef Singh V (1979) A new active—RC circuit realization of floating inductance. Proc IEEE 67:1659–1660CrossRef
11.
Zurück zum Zitat Filanovsky IM, Stromsmoe KA (1981) Current-voltage conveyor. Electron Lett 17:129–130CrossRef Filanovsky IM, Stromsmoe KA (1981) Current-voltage conveyor. Electron Lett 17:129–130CrossRef
12.
Zurück zum Zitat Kumar U (1981) Current conveyors: a review of the state of the art. IEEE Circ Syst Mag 3:10–14CrossRef Kumar U (1981) Current conveyors: a review of the state of the art. IEEE Circ Syst Mag 3:10–14CrossRef
13.
Zurück zum Zitat Dostal T, Pospisil J (1982) Current and voltage conveyors-a family of three-port immittance converters. Int Symp Circ Syst:419–422 Dostal T, Pospisil J (1982) Current and voltage conveyors-a family of three-port immittance converters. Int Symp Circ Syst:419–422
14.
Zurück zum Zitat Dostal T, Pospisil J (1982) Hybrid models of 3-port immittance convertors and current and voltage conveyors. Electron Lett 18:887–888CrossRef Dostal T, Pospisil J (1982) Hybrid models of 3-port immittance convertors and current and voltage conveyors. Electron Lett 18:887–888CrossRef
15.
Zurück zum Zitat Senani R (1984) Novel application of generalized current conveyor. Electron Lett 20:169–170; Errata (1984) Electron Lett 20: 356CrossRef Senani R (1984) Novel application of generalized current conveyor. Electron Lett 20:169–170; Errata (1984) Electron Lett 20: 356CrossRef
16.
Zurück zum Zitat Senani R (1984) Floating ideal FDNR using only two current conveyors. Electron Lett 20:205–206CrossRef Senani R (1984) Floating ideal FDNR using only two current conveyors. Electron Lett 20:205–206CrossRef
17.
Zurück zum Zitat Senani R (1986) On the realization of floating active elements. IEEE Trans Circ Syst 33:323–324CrossRef Senani R (1986) On the realization of floating active elements. IEEE Trans Circ Syst 33:323–324CrossRef
18.
Zurück zum Zitat Wilson B (1986) Using current conveyors. Electron Wirel World 92:28–32 Wilson B (1986) Using current conveyors. Electron Wirel World 92:28–32
19.
Zurück zum Zitat Wilson B (1989) Analogue current mode circuits. Int J Elect Eng Educ 26:206–223 Wilson B (1989) Analogue current mode circuits. Int J Elect Eng Educ 26:206–223
20.
Zurück zum Zitat Kumar U, Shukla SK (1989) The implementation and applications of current conveyors. Microelectron J 20:25–46CrossRef Kumar U, Shukla SK (1989) The implementation and applications of current conveyors. Microelectron J 20:25–46CrossRef
21.
Zurück zum Zitat Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40CrossRef Pal K (1989) Modified current conveyors and their applications. Microelectron J 20:37–40CrossRef
22.
Zurück zum Zitat Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc 137:63–77 Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc 137:63–77
23.
Zurück zum Zitat Sedra AS, Roberts GW, Gohh F (1990) The current conveyor: history, progress and new results. IEE Proc 137:78–87 Sedra AS, Roberts GW, Gohh F (1990) The current conveyor: history, progress and new results. IEE Proc 137:78–87
24.
Zurück zum Zitat Rathore TS (1991) Correspondence: some more published literature on current conveyors. IEE Proc Circ Devices Syst 138:432CrossRef Rathore TS (1991) Correspondence: some more published literature on current conveyors. IEE Proc Circ Devices Syst 138:432CrossRef
25.
Zurück zum Zitat Toumazou C, Payne A, Lidgey FJ (1991) Operational floating conveyor. Electron Lett 27:651–652CrossRef Toumazou C, Payne A, Lidgey FJ (1991) Operational floating conveyor. Electron Lett 27:651–652CrossRef
26.
Zurück zum Zitat Wilson B (1992) Trends in current conveyor and current-mode amplifier design. Int J Electron 73:573–583CrossRef Wilson B (1992) Trends in current conveyor and current-mode amplifier design. Int J Electron 73:573–583CrossRef
27.
Zurück zum Zitat Fabre A, Saaid O (1993) Novel translinear impedance convertor and band pass filter applications. Electron Lett 29:746–747CrossRef Fabre A, Saaid O (1993) Novel translinear impedance convertor and band pass filter applications. Electron Lett 29:746–747CrossRef
28.
Zurück zum Zitat Fabre A (1995) Third-generation current conveyor: a new helpful active element. Electron Lett 31:338–339CrossRef Fabre A (1995) Third-generation current conveyor: a new helpful active element. Electron Lett 31:338–339CrossRef
29.
Zurück zum Zitat Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 143:91–96CrossRefMATH Chiu W, Liu SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyors and their applications. IEE Proc Circ Devices Syst 143:91–96CrossRefMATH
30.
Zurück zum Zitat Wu J, E-El M (1996) Current–mode ladder filters using multiple output current conveyors. IEE Proc Circ Devices Syst 143:218–222CrossRefMATH Wu J, E-El M (1996) Current–mode ladder filters using multiple output current conveyors. IEE Proc Circ Devices Syst 143:218–222CrossRefMATH
31.
Zurück zum Zitat Payne A, Toumazou C (1996) Analog amplifiers: classification and generalization. IEEE Trans Circ Syst-I 43:43–50CrossRef Payne A, Toumazou C (1996) Analog amplifiers: classification and generalization. IEEE Trans Circ Syst-I 43:43–50CrossRef
32.
Zurück zum Zitat Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200CrossRef Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEE Proc Circ Devices Syst 144:195–200CrossRef
33.
Zurück zum Zitat Toumazou C, Barry G (1997) Intuitive analogue circuit design. Electron Commun Eng J 231–239 Toumazou C, Barry G (1997) Intuitive analogue circuit design. Electron Commun Eng J 231–239
34.
Zurück zum Zitat Cabeza R, Carlosena A, Arbel A (1997) Use of a CCII—as a universal building block. Microelectron J 28:543–550CrossRef Cabeza R, Carlosena A, Arbel A (1997) Use of a CCII—as a universal building block. Microelectron J 28:543–550CrossRef
35.
Zurück zum Zitat Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundament Electron Commun Comput Sci E81-A:973–975 Soliman AM (1998) Generalized voltage and current conveyors: practical realizations using CCII. IEICE Trans Fundament Electron Commun Comput Sci E81-A:973–975
36.
Zurück zum Zitat Alami M (1999) Second generation current conveyors with enhanced input resistance. Int J Electron 86:405–412CrossRef Alami M (1999) Second generation current conveyors with enhanced input resistance. Int J Electron 86:405–412CrossRef
37.
Zurück zum Zitat Awad IA (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86:413–432CrossRef Awad IA (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86:413–432CrossRef
38.
Zurück zum Zitat Ridley R (2000) Current mode or voltage mode? Switching Power Mag 5:4–9 Ridley R (2000) Current mode or voltage mode? Switching Power Mag 5:4–9
39.
Zurück zum Zitat Schmid H (2000) Approximating the universal active element. IEEE Trans Circ Syst-II 47:1160–1169CrossRef Schmid H (2000) Approximating the universal active element. IEEE Trans Circ Syst-II 47:1160–1169CrossRef
40.
Zurück zum Zitat Biolek D, Vrba K, Cajka J, Dostal T (2000) General three-port current conveyor: a useful tool for network design. J Electr Eng 51:36–39 Biolek D, Vrba K, Cajka J, Dostal T (2000) General three-port current conveyor: a useful tool for network design. J Electr Eng 51:36–39
41.
Zurück zum Zitat El-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circ Syst-II 47:306–313CrossRef El-Adawy AA, Soliman AM, Elwan HO (2000) A novel fully differential current conveyor and applications for analog VLSI. IEEE Trans Circ Syst-II 47:306–313CrossRef
42.
Zurück zum Zitat Becvar D, Vrba K, Zeman V, Musil V (2000) Novel universal active block: a universal current conveyor. ISCAS 3:471–474 Becvar D, Vrba K, Zeman V, Musil V (2000) Novel universal active block: a universal current conveyor. ISCAS 3:471–474
43.
Zurück zum Zitat Beevao D, Vrba K (2000) Novel generations of inverting current conveyor using universal current conveyor. Electron J Eng Tech 3:4 Beevao D, Vrba K (2000) Novel generations of inverting current conveyor using universal current conveyor. Electron J Eng Tech 3:4
44.
Zurück zum Zitat Gilbert B (2001) Analog at milepost 2000: a personal perspective. Proc IEEE 89:289–304CrossRef Gilbert B (2001) Analog at milepost 2000: a personal perspective. Proc IEEE 89:289–304CrossRef
45.
Zurück zum Zitat Takagi S (2001) Analog circuit designs in the last decade and their trends toward the 21st century. IEICE Trans Fundament E84-A:68–79 Takagi S (2001) Analog circuit designs in the last decade and their trends toward the 21st century. IEICE Trans Fundament E84-A:68–79
46.
Zurück zum Zitat Gupta SS, Senani R (2001) Comment on ‘CMOS differential difference current conveyors and their applications’. IEE Proc Circ Devices Syst 148:335–336CrossRef Gupta SS, Senani R (2001) Comment on ‘CMOS differential difference current conveyors and their applications’. IEE Proc Circ Devices Syst 148:335–336CrossRef
47.
Zurück zum Zitat Arbel AF (2002) Review of research on ASP by the author. IEEE Circ Syst-II 49:599–611CrossRef Arbel AF (2002) Review of research on ASP by the author. IEEE Circ Syst-II 49:599–611CrossRef
48.
Zurück zum Zitat Mangelsdorf CW (2002) The changing face of analog IC design. IEICE Trans Fundament E85-A:282–285 Mangelsdorf CW (2002) The changing face of analog IC design. IEICE Trans Fundament E85-A:282–285
49.
Zurück zum Zitat Sato T, Wada K, Takagi S, Fujii N (2002) Extension of current conveyor concepts and its applications. IEICE Trans Fundament E85-A:414–421 Sato T, Wada K, Takagi S, Fujii N (2002) Extension of current conveyor concepts and its applications. IEICE Trans Fundament E85-A:414–421
50.
Zurück zum Zitat Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54CrossRef Kuntman H, Cicekoglu O, Ozoguz S (2002) A modified third generation current conveyor, its characterization and applications. Frequenz 56:47–54CrossRef
51.
Zurück zum Zitat Zeki A, Toker A (2003) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923CrossRef Zeki A, Toker A (2003) The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters. Int J Electron 89:913–923CrossRef
52.
Zurück zum Zitat Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sig Process 35:79–90CrossRef Schmid H (2003) Why ‘Current Mode’ does not guarantee good performance. Analog Integr Circ Sig Process 35:79–90CrossRef
53.
Zurück zum Zitat Alzaher HA, Elwan H, Ismail M (2003) A CMOS fully balanced second-generation current conveyors. IEEE Trans Circ Syst-II 50:278–287CrossRef Alzaher HA, Elwan H, Ismail M (2003) A CMOS fully balanced second-generation current conveyors. IEEE Trans Circ Syst-II 50:278–287CrossRef
54.
Zurück zum Zitat Biolek D, Gubek T, Brno UFV (2004) New circuit elements for current-mode signal processing. Elektrorevue 28:12 Biolek D, Gubek T, Brno UFV (2004) New circuit elements for current-mode signal processing. Elektrorevue 28:12
55.
Zurück zum Zitat Vidal E, Alarcon E, Gilbert B (2004) Up-to-date bibliography of current-mode design. Analog Integr Circ Sig Process 38:245–262CrossRef Vidal E, Alarcon E, Gilbert B (2004) Up-to-date bibliography of current-mode design. Analog Integr Circ Sig Process 38:245–262CrossRef
56.
Zurück zum Zitat Cajka J, Dostal T, Vrba K (2004) General view on current conveyors. Int J Circ Theor Appl 32:133–138CrossRef Cajka J, Dostal T, Vrba K (2004) General view on current conveyors. Int J Circ Theor Appl 32:133–138CrossRef
57.
Zurück zum Zitat Gilbert B (2004) Current mode, voltage mode or free mode? A few sage suggestions. Analog Integr Circ Sig Process 38:83–101CrossRef Gilbert B (2004) Current mode, voltage mode or free mode? A few sage suggestions. Analog Integr Circ Sig Process 38:83–101CrossRef
58.
Zurück zum Zitat Cajka J, Vrba K (2004) The voltage conveyor may have in fact found its way into circuit theory. Int J Electron Commun 58:244–248CrossRef Cajka J, Vrba K (2004) The voltage conveyor may have in fact found its way into circuit theory. Int J Electron Commun 58:244–248CrossRef
59.
Zurück zum Zitat Gift SJG (2005) The operational conveyor and its application in an accurate current amplifier with gain-independent bandwidth. Int J Electron 92:33–47CrossRef Gift SJG (2005) The operational conveyor and its application in an accurate current amplifier with gain-independent bandwidth. Int J Electron 92:33–47CrossRef
60.
Zurück zum Zitat Soliman AM (2008) The inverting second generation current conveyors as universal building blocks. Int J Electron Commun 62:114–121CrossRef Soliman AM (2008) The inverting second generation current conveyors as universal building blocks. Int J Electron Commun 62:114–121CrossRef
61.
Zurück zum Zitat Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32 Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17:15–32
62.
Zurück zum Zitat Horng JW, Hou CL, Chang CM (2008) Multi-input differential current conveyor, CMOS realisation and application. IET Circ Devices Syst 2:469–475CrossRef Horng JW, Hou CL, Chang CM (2008) Multi-input differential current conveyor, CMOS realisation and application. IET Circ Devices Syst 2:469–475CrossRef
63.
Zurück zum Zitat Horng YS, Liu WH, Tu SH, Chen JJ (2009) New building block: multiplication-mode current conveyor. IET Circ Devices Syst 3:41–48CrossRef Horng YS, Liu WH, Tu SH, Chen JJ (2009) New building block: multiplication-mode current conveyor. IET Circ Devices Syst 3:41–48CrossRef
64.
Zurück zum Zitat Siripruchyanun M, Silapan P, Jaikla W (2009) Realization of CMOS current controlled current conveyor transconductance amplifier (CCCCTA) and its applications. J Active Passive Electron Devices 4:35–53 Siripruchyanun M, Silapan P, Jaikla W (2009) Realization of CMOS current controlled current conveyor transconductance amplifier (CCCCTA) and its applications. J Active Passive Electron Devices 4:35–53
65.
Zurück zum Zitat Sobhy E, Soliman AM (2009) Novel CMOS realization of balanced-output third generation inverting current conveyor with applications. Circ Syst Sig Process 28:1037–1051CrossRefMATH Sobhy E, Soliman AM (2009) Novel CMOS realization of balanced-output third generation inverting current conveyor with applications. Circ Syst Sig Process 28:1037–1051CrossRefMATH
66.
Zurück zum Zitat De Marcellis A, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59CrossRef De Marcellis A, Ferri G, Guerrini NC, Scotti G, Stornelli V, Trifiletti A (2009) The VCG-CCII: a novel building block and its application to capacitance multiplication. Analog Integr Circ Sig Process 58:55–59CrossRef
67.
Zurück zum Zitat Chunhua W, Yang L, Qiujing Z, Yu F (2010) Systematic design of fully balanced differential current-mode multiple-loop feedback filters using CFBCCII. Radioengineering 19:185–193 Chunhua W, Yang L, Qiujing Z, Yu F (2010) Systematic design of fully balanced differential current-mode multiple-loop feedback filters using CFBCCII. Radioengineering 19:185–193
68.
Zurück zum Zitat Metin B, Herencsar N, Vrba K (2012) A CMOS DCCII with grounded capacitor based cascadable all-pass filter application. Radioengineering 21:718–724 Metin B, Herencsar N, Vrba K (2012) A CMOS DCCII with grounded capacitor based cascadable all-pass filter application. Radioengineering 21:718–724
69.
Zurück zum Zitat Abdalla KK, Bhaskar DR, Senani R (2012) A review of the evolution of the current-mode circuits and techniques and various modern analog circuit building blocks. Nat Sci 10:1–13 Abdalla KK, Bhaskar DR, Senani R (2012) A review of the evolution of the current-mode circuits and techniques and various modern analog circuit building blocks. Nat Sci 10:1–13
70.
Zurück zum Zitat Pandey N, Kumar P, Choudhary J (2013) Current controlled differential difference current conveyor transconductance amplifier and its application as wave active filter. ISRN Electron Article ID 968749:11 Pandey N, Kumar P, Choudhary J (2013) Current controlled differential difference current conveyor transconductance amplifier and its application as wave active filter. ISRN Electron Article ID 968749:11
71.
Zurück zum Zitat Chong CP, Smith KC (1986) Biquadratic filter sections employing a single current conveyor. Electron Lett 22:1162CrossRef Chong CP, Smith KC (1986) Biquadratic filter sections employing a single current conveyor. Electron Lett 22:1162CrossRef
72.
Zurück zum Zitat Rathore TS (1976) Analogue computations using current conveyors. J Inst Electron Telecom Engr 22:510–511 Rathore TS (1976) Analogue computations using current conveyors. J Inst Electron Telecom Engr 22:510–511
73.
Zurück zum Zitat Kuntman HH (2011) New advances and possibilities provided by alternative active elements in analogue circuit design. Elektrik-Elektronik ve Bilgisayar Sempozyumu 1:1–12 Kuntman HH (2011) New advances and possibilities provided by alternative active elements in analogue circuit design. Elektrik-Elektronik ve Bilgisayar Sempozyumu 1:1–12
74.
Zurück zum Zitat Chua LO (1967) The rotator- a new network component. Proc IEEE 55:1566–1577CrossRef Chua LO (1967) The rotator- a new network component. Proc IEEE 55:1566–1577CrossRef
75.
Zurück zum Zitat Chua LO (1968) Synthesis of new non-linear network elements. Proc IEEE 56:1325–1340CrossRef Chua LO (1968) Synthesis of new non-linear network elements. Proc IEEE 56:1325–1340CrossRef
76.
Zurück zum Zitat Mahmoud SA, Hashiesh MA, Soliman AM (2005) Low-voltage digitally controlled fully differential current conveyor. IEEE Trans Circ Syst-I 52:2055–2064CrossRef Mahmoud SA, Hashiesh MA, Soliman AM (2005) Low-voltage digitally controlled fully differential current conveyor. IEEE Trans Circ Syst-I 52:2055–2064CrossRef
Metadaten
Titel
The Evolution and the History of Current Conveyors
verfasst von
Raj Senani
D. R. Bhaskar
A. K. Singh
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-08684-2_1

Neuer Inhalt