Skip to main content
Erschienen in: Journal of Materials Science 19/2016

29.06.2016 | Original Paper

The fracture toughness of polymer cellulose nanocomposites using the essential work of fracture method

verfasst von: M. Shir Mohammadi, C. Hammerquist, J. Simonsen, J. A. Nairn

Erschienen in: Journal of Materials Science | Ausgabe 19/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work reinforced both a glassy polymer (high stiffness matrix) and a rubbery polymer (low stiffness matrix) with cellulose nanocrystals (CNC) derived from natural sources. CNC addition always increased stiffness while it increased toughness for a rubbery polymer and caused no loss in toughness for a glassy polymer. These results contradict many claims that when stiffness increases, the toughness decreases. We show that these claims depend on how toughness is measured. Our results were based on toughness measured using the essential work of fracture method. In contrast, toughness determined from area under the stress–strain curve shows a significant decrease, but that method may be a poor measure of toughness. Property enhancements usually require a good fiber/matrix interface. We used modeling of stiffness properties to confirm that CNC has a good interface with the studied polymer matrices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Anderson T, Anderson T (2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca Raton Anderson T, Anderson T (2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca Raton
2.
Zurück zum Zitat Christenson RM (1979) Mechanics of composite materials. Wiley, New York Christenson RM (1979) Mechanics of composite materials. Wiley, New York
3.
Zurück zum Zitat Cotterell B, Chia J, Hbaieb K (2007) Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites. Eng Fract Mech 74(7):1054–1078CrossRef Cotterell B, Chia J, Hbaieb K (2007) Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites. Eng Fract Mech 74(7):1054–1078CrossRef
4.
Zurück zum Zitat Cotterell B, Reddell JK (1977) The essential work of plane stress ductile fracture. Int J Fract Mech 13:267–277 Cotterell B, Reddell JK (1977) The essential work of plane stress ductile fracture. Int J Fract Mech 13:267–277
5.
Zurück zum Zitat Farshid B, Lalwani G, ShirMohammadi M, Simonsen J, Sitharaman B (2015) Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering. J Biomed Mater Res: Part B—Appl Biomater Farshid B, Lalwani G, ShirMohammadi M, Simonsen J, Sitharaman B (2015) Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering. J Biomed Mater Res: Part B—Appl Biomater
6.
Zurück zum Zitat Gojny F, Wichmann M, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371CrossRef Gojny F, Wichmann M, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64(15):2363–2371CrossRef
7.
Zurück zum Zitat Gopalan Nair K, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRef Gopalan Nair K, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842CrossRef
8.
Zurück zum Zitat Hashin Z (1990) Thermoelastic properties of fiber composites with imperfect interface. Mech Mater 8(4):333–348CrossRef Hashin Z (1990) Thermoelastic properties of fiber composites with imperfect interface. Mech Mater 8(4):333–348CrossRef
9.
Zurück zum Zitat Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585CrossRef
10.
Zurück zum Zitat Huang J, Keskkula H, Paul D (2004) Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers: morphology and izod impact behavior. Polymer 45(12):4203–4215CrossRef Huang J, Keskkula H, Paul D (2004) Rubber toughening of an amorphous polyamide by functionalized SEBS copolymers: morphology and izod impact behavior. Polymer 45(12):4203–4215CrossRef
11.
Zurück zum Zitat Hull D, Clyne T (1996) An introduction to composite materials. Cambridge University Press, CambridgeCrossRef Hull D, Clyne T (1996) An introduction to composite materials. Cambridge University Press, CambridgeCrossRef
12.
Zurück zum Zitat Jovanovic G, Atre S, Paul B, Simonsen J, Remcho V, Chang C (2012) Microfluidic devices, particularly filtration devices comprising polymeric membranes, and method for their manufacture and use. US Patent 8,137,554 Jovanovic G, Atre S, Paul B, Simonsen J, Remcho V, Chang C (2012) Microfluidic devices, particularly filtration devices comprising polymeric membranes, and method for their manufacture and use. US Patent 8,137,554
13.
Zurück zum Zitat Kelley J, Simonsen J, Ding J (2013) Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries. J Appl Polym Sci 127(1):487–493CrossRef Kelley J, Simonsen J, Ding J (2013) Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries. J Appl Polym Sci 127(1):487–493CrossRef
14.
Zurück zum Zitat Labour T, Vigier G, Séguéla R, Gauthier C, Orange G, Bomal Y (2002) Influence of the ?-crystalline phase on the mechanical properties of unfilled and calcium carbonate-filled polypropylene: Ductile cracking and impact behavior. J Polym Sci Part B Polym Phys 40(1):31–42CrossRef Labour T, Vigier G, Séguéla R, Gauthier C, Orange G, Bomal Y (2002) Influence of the ?-crystalline phase on the mechanical properties of unfilled and calcium carbonate-filled polypropylene: Ductile cracking and impact behavior. J Polym Sci Part B Polym Phys 40(1):31–42CrossRef
15.
Zurück zum Zitat Levita G, Parisi L, Marchetti A, Bartolommei L (1996) Effects of thickness on the specific essential work of fracture of rigid PVC. Polym Eng Sci 36(20):2534–2541CrossRef Levita G, Parisi L, Marchetti A, Bartolommei L (1996) Effects of thickness on the specific essential work of fracture of rigid PVC. Polym Eng Sci 36(20):2534–2541CrossRef
16.
Zurück zum Zitat Lim SH, Dasari A, Yu ZZ, Mai YW, Liu S, Yong MS (2007) Fracture toughness of nylon 6/organoclay/elastomer nanocomposites. Compos Sci Technol 67(14):2914–2923CrossRef Lim SH, Dasari A, Yu ZZ, Mai YW, Liu S, Yong MS (2007) Fracture toughness of nylon 6/organoclay/elastomer nanocomposites. Compos Sci Technol 67(14):2914–2923CrossRef
17.
Zurück zum Zitat Lin Y, Chen H, Chan CM, Wu J (2008) High impact toughness polypropylene/caco3 nanocomposites and the toughening mechanism. Macromolecules 41(23):9204–9213CrossRef Lin Y, Chen H, Chan CM, Wu J (2008) High impact toughness polypropylene/caco3 nanocomposites and the toughening mechanism. Macromolecules 41(23):9204–9213CrossRef
18.
Zurück zum Zitat Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L (2005) Cavaillé: New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene:? effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRef Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L (2005) Cavaillé: New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene:? effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRef
19.
Zurück zum Zitat Mai YW, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32:105–125CrossRef Mai YW, Cotterell B (1986) On the essential work of ductile fracture in polymers. Int J Fract 32:105–125CrossRef
20.
Zurück zum Zitat Mai YW, Cotterell B, Horlyck R, Visna G (1987) The essential work of plane stress ductile fracture of linear polyethylene. Polym Eng Sci 27:804–809CrossRef Mai YW, Cotterell B, Horlyck R, Visna G (1987) The essential work of plane stress ductile fracture of linear polyethylene. Polym Eng Sci 27:804–809CrossRef
21.
Zurück zum Zitat Matsumoto N, Nairn JA (2009) The fracture toughness of medium density fiberboard (mdf) including the effects of fiber bridging and crack-plane interference. Eng Fract Mech 76(18):2748–2757CrossRef Matsumoto N, Nairn JA (2009) The fracture toughness of medium density fiberboard (mdf) including the effects of fiber bridging and crack-plane interference. Eng Fract Mech 76(18):2748–2757CrossRef
22.
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
23.
Zurück zum Zitat Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRef Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRef
24.
Zurück zum Zitat Nairn J, Mohammadi MS (2015) Numerical and analytical modeling of aligned short fiber composites including imperfect interfaces. Compos Part A Appl Sci Manuf 77:26–36CrossRef Nairn J, Mohammadi MS (2015) Numerical and analytical modeling of aligned short fiber composites including imperfect interfaces. Compos Part A Appl Sci Manuf 77:26–36CrossRef
25.
Zurück zum Zitat Nairn JA (1997) On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech Mater 26:63–80CrossRef Nairn JA (1997) On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech Mater 26:63–80CrossRef
26.
Zurück zum Zitat Nairn JA (2004) Generalized shear-lag analysis including imperfect interfaces. Adv Compos Lett 13:263–274 Nairn JA (2004) Generalized shear-lag analysis including imperfect interfaces. Adv Compos Lett 13:263–274
27.
Zurück zum Zitat Nairn JA, Mendels DA (2001) On the use of planar shear-lag methods for stress-transfer analysis of multilayered composites. Mech Mater 33:335–362CrossRef Nairn JA, Mendels DA (2001) On the use of planar shear-lag methods for stress-transfer analysis of multilayered composites. Mech Mater 33:335–362CrossRef
28.
Zurück zum Zitat Nasiri-Abarbekoh H, Ekrami A, Ziaei-Moayyed AA (2013) Effects of thickness and texture on mechanical properties anistropy of commerically pure titanium thin sheets. Mater Design 44:528–534CrossRef Nasiri-Abarbekoh H, Ekrami A, Ziaei-Moayyed AA (2013) Effects of thickness and texture on mechanical properties anistropy of commerically pure titanium thin sheets. Mater Design 44:528–534CrossRef
29.
Zurück zum Zitat Paipetis A, Galiotis C, Liu YC, Nairn JA (1999) Stress transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J Compos Mater 33(4):377–399CrossRef Paipetis A, Galiotis C, Liu YC, Nairn JA (1999) Stress transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J Compos Mater 33(4):377–399CrossRef
30.
Zurück zum Zitat Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422–4427CrossRef Pei A, Malho JM, Ruokolainen J, Zhou Q, Berglund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44(11):4422–4427CrossRef
31.
Zurück zum Zitat Priest AH, Holmes B (1981) A multi-test piece approach to the fracture characterization of linepipe steels. Int J Fract 17(3):277–299CrossRef Priest AH, Holmes B (1981) A multi-test piece approach to the fracture characterization of linepipe steels. Int J Fract 17(3):277–299CrossRef
32.
Zurück zum Zitat Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10,506–10,516CrossRef Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10,506–10,516CrossRef
33.
Zurück zum Zitat Rink M, Andena L, Marano C (2014) The essential work of fracture in relation to j-integral. Eng Fract Mech 127:46–55CrossRef Rink M, Andena L, Marano C (2014) The essential work of fracture in relation to j-integral. Eng Fract Mech 127:46–55CrossRef
34.
Zurück zum Zitat Saleemi AS, Nairn JA (1990) The plane-strain essential work of fracture as a measure of the fracture toughness of ductile polymers. Polym Eng Sci 30(4):211–218CrossRef Saleemi AS, Nairn JA (1990) The plane-strain essential work of fracture as a measure of the fracture toughness of ductile polymers. Polym Eng Sci 30(4):211–218CrossRef
35.
Zurück zum Zitat Shah D, Maiti P, Jiang D, Batt C, Giannelis E (2005) Effect of nanoparticle mobility on toughness of polymer nanocomposites. Adv Mater 17(5):525–528CrossRef Shah D, Maiti P, Jiang D, Batt C, Giannelis E (2005) Effect of nanoparticle mobility on toughness of polymer nanocomposites. Adv Mater 17(5):525–528CrossRef
36.
Zurück zum Zitat Shir Mohammadi M, Nairn JA (2014) Crack propagation and fracture toughness of solid balsa used for cores of sandwich composites. J Sandw Struct Mater 16(1):22–41CrossRef Shir Mohammadi M, Nairn JA (2014) Crack propagation and fracture toughness of solid balsa used for cores of sandwich composites. J Sandw Struct Mater 16(1):22–41CrossRef
37.
Zurück zum Zitat Shir Mohammadi M, Nairn JA (2016) Mean-field modeling of soft-fiber composites with imperfect interfaces and soft matrices (in preparation). Shir Mohammadi M, Nairn JA (2016) Mean-field modeling of soft-fiber composites with imperfect interfaces and soft matrices (in preparation).
38.
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef
39.
Zurück zum Zitat Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556–2563CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8(8):2556–2563CrossRef
40.
Zurück zum Zitat Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
41.
Zurück zum Zitat Wichmann MH, Schulte K, Wagner HD (2008) On nanocomposite toughness. Compos Sci Technol 68(1):329–331CrossRef Wichmann MH, Schulte K, Wagner HD (2008) On nanocomposite toughness. Compos Sci Technol 68(1):329–331CrossRef
42.
Zurück zum Zitat Wood S (2015) mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R package version. pp. 1.8–6 Wood S (2015) mgcv: mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R package version. pp. 1.8–6
Metadaten
Titel
The fracture toughness of polymer cellulose nanocomposites using the essential work of fracture method
verfasst von
M. Shir Mohammadi
C. Hammerquist
J. Simonsen
J. A. Nairn
Publikationsdatum
29.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0143-x

Weitere Artikel der Ausgabe 19/2016

Journal of Materials Science 19/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.