Skip to main content
Erschienen in: Journal of Materials Science 19/2016

28.06.2016 | Original Paper

Selective doping of nitrogen into carbon materials without catalysts

verfasst von: Yasuhiro Yamada, Shintaro Matsuo, Kouki Abe, Shingo Kubo, Satoshi Sato

Erschienen in: Journal of Materials Science | Ausgabe 19/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective doping of nitrogen into carbon materials in the absence of catalysts is a key for various applications of carbon materials. It is well known that most nitrogen-containing raw materials generate unnecessary functional groups during carbonization. Many researchers have noticed the significance of the selective nitrogen doping, whereas only a few works have reported the selective doping. In addition, those few works used catalysts to synthesize nitrogen-doped carbon materials, but the presence of catalysts limits the applications of nitrogen-doped carbon materials. This study found an unusual aromatic compound, imidazo[1,2-a]pyridine (IP), which maintained 88 % of the functional groups of as-received IP even after carbonization at 673 K in the absence of catalysts, and the functional groups were further maintained up to 773 K. The percentage of remaining functional groups was revealed using our state-of-the-art techniques of simulated X-ray photoelectron spectroscopy and Raman spectroscopy combined with transition state calculation using density functional theory. The low carbonization temperature as well as selective doping of nitrogen was achieved because of the low activation energy of dehydrogenation reaction among IP molecules compared to the high activation energy of radical formation for scission of C–N bonding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013CrossRef Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013CrossRef
2.
Zurück zum Zitat Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833CrossRef Parambhath VB, Nagar R, Ramaprabhu S (2012) Effect of nitrogen doping on hydrogen storage capacity of palladium decorated graphene. Langmuir 28:7826–7833CrossRef
3.
Zurück zum Zitat Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551CrossRef Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551CrossRef
4.
Zurück zum Zitat Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef
5.
Zurück zum Zitat Patel M, Feng W, Savaram K, Khoshi MR, Huang R, Sun J et al (2015) Microwave enabled one-pot, one-step fabrication and nitrogen doping of holey graphene oxide for catalytic applications. Small 11:3358–3368CrossRef Patel M, Feng W, Savaram K, Khoshi MR, Huang R, Sun J et al (2015) Microwave enabled one-pot, one-step fabrication and nitrogen doping of holey graphene oxide for catalytic applications. Small 11:3358–3368CrossRef
6.
Zurück zum Zitat Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176CrossRef Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176CrossRef
7.
Zurück zum Zitat Lv R, Terrones M (2012) Towards new graphene materials: doped graphene sheets and nanoribbons. Mater Lett 78:209–218CrossRef Lv R, Terrones M (2012) Towards new graphene materials: doped graphene sheets and nanoribbons. Mater Lett 78:209–218CrossRef
8.
Zurück zum Zitat Daems N, Sheng X, Vankelecom FJI, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110CrossRef Daems N, Sheng X, Vankelecom FJI, Pescarmona PP (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2:4085–4110CrossRef
9.
Zurück zum Zitat Wang X, Hou Z, Ikeda T, Huang SF, Terakura K, Boero M et al (2011) Selective nitrogen doping in graphene: Enhanced catalytic activity for the oxygen reduction reaction. Phys Rev B 84:245434CrossRef Wang X, Hou Z, Ikeda T, Huang SF, Terakura K, Boero M et al (2011) Selective nitrogen doping in graphene: Enhanced catalytic activity for the oxygen reduction reaction. Phys Rev B 84:245434CrossRef
10.
Zurück zum Zitat Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRef Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRef
11.
Zurück zum Zitat Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89:143–151CrossRef Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89:143–151CrossRef
12.
Zurück zum Zitat Yamada Y, Miyauchi M, Kim J, Hirose-Takai K, Sato Y, Suenaga K et al (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378CrossRef Yamada Y, Miyauchi M, Kim J, Hirose-Takai K, Sato Y, Suenaga K et al (2011) Exfoliated graphene ligands stabilizing copper cations. Carbon 49:3375–3378CrossRef
13.
Zurück zum Zitat Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y et al (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94CrossRef Yamada Y, Suzuki Y, Yasuda H, Uchizawa S, Hirose-Takai K, Sato Y et al (2014) Functionalized graphene sheets coordinating metal cations. Carbon 75:81–94CrossRef
14.
Zurück zum Zitat Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M et al (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Chem Phys 12:4351–4359CrossRef Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M et al (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Chem Phys 12:4351–4359CrossRef
15.
Zurück zum Zitat Zhang LS, Liang XQ, Song WG, Wu ZY (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059CrossRef Zhang LS, Liang XQ, Song WG, Wu ZY (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059CrossRef
16.
Zurück zum Zitat Kumar A, Ganguly A, Papakonstantinou P (2012) Thermal stability study of nitrogen functionalities in a graphene network. J Phys: Condens Mater 24:235503 Kumar A, Ganguly A, Papakonstantinou P (2012) Thermal stability study of nitrogen functionalities in a graphene network. J Phys: Condens Mater 24:235503
17.
Zurück zum Zitat Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653CrossRef Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33:1641–1653CrossRef
18.
Zurück zum Zitat Lu YF, Lo ST, Lin JC, Zhang W, Lu JY, Liu FH et al (2013) Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7:6522–6532CrossRef Lu YF, Lo ST, Lin JC, Zhang W, Lu JY, Liu FH et al (2013) Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7:6522–6532CrossRef
19.
Zurück zum Zitat Walker PL Jr (1990) Carbon: an old but new material revisited. Carbon 28:261–279CrossRef Walker PL Jr (1990) Carbon: an old but new material revisited. Carbon 28:261–279CrossRef
20.
Zurück zum Zitat Isaacs LG (1970) The graphitization of organic compounds-III. Heterocyclic nitrogen derivatives of anthracene and phenanthrene. Carbon 8:1–5CrossRef Isaacs LG (1970) The graphitization of organic compounds-III. Heterocyclic nitrogen derivatives of anthracene and phenanthrene. Carbon 8:1–5CrossRef
21.
Zurück zum Zitat Kinney CR, Delbel E (1954) Pyrolytic behavior of unsubstituted aromatic hydrocarbons. Ind Eng Chem 46:548–556CrossRef Kinney CR, Delbel E (1954) Pyrolytic behavior of unsubstituted aromatic hydrocarbons. Ind Eng Chem 46:548–556CrossRef
22.
Zurück zum Zitat Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437CrossRef Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437CrossRef
23.
Zurück zum Zitat Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629CrossRef Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629CrossRef
24.
Zurück zum Zitat Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74CrossRef Yamada Y, Kim J, Matsuo S, Sato S (2014) Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 70:59–74CrossRef
25.
Zurück zum Zitat Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O et al (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 45:6919–6921CrossRef Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O et al (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 45:6919–6921CrossRef
26.
Zurück zum Zitat Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRef
27.
Zurück zum Zitat Chen L, Hernandez Y, Feng X, Müllen K (2012) Nitrogenated holey two-dimensional structures. Angew Chem Int Ed 51:7640–7654CrossRef Chen L, Hernandez Y, Feng X, Müllen K (2012) Nitrogenated holey two-dimensional structures. Angew Chem Int Ed 51:7640–7654CrossRef
28.
Zurück zum Zitat Bieri M, Blankenburg S, Kivala M, Pignedoli CA, Ruffieux P, Müllen K et al (2011) Surface-supported 2D heterotriangulene polymers. Chem Commun 47:10239–10241CrossRef Bieri M, Blankenburg S, Kivala M, Pignedoli CA, Ruffieux P, Müllen K et al (2011) Surface-supported 2D heterotriangulene polymers. Chem Commun 47:10239–10241CrossRef
29.
Zurück zum Zitat Griffin RR, Scaroni AW, Walker PL Jr (1991) Cokes and graphites produced from anthracene, acridine, and phenazine. Carbon 29:991–998CrossRef Griffin RR, Scaroni AW, Walker PL Jr (1991) Cokes and graphites produced from anthracene, acridine, and phenazine. Carbon 29:991–998CrossRef
30.
Zurück zum Zitat Madison JJ, Roberts RM (1958) Pyrolysis of aromatics and related heterocyclics. Ind Eng Chem 50:237–250CrossRef Madison JJ, Roberts RM (1958) Pyrolysis of aromatics and related heterocyclics. Ind Eng Chem 50:237–250CrossRef
31.
Zurück zum Zitat Ruland W (1965) X-ray studies on the carbonization and graphitization of acenaphthylene and bifluorenyl. Carbon 2:365–378CrossRef Ruland W (1965) X-ray studies on the carbonization and graphitization of acenaphthylene and bifluorenyl. Carbon 2:365–378CrossRef
32.
Zurück zum Zitat Moraski GC, Markley LD, Chang M, Cho S, Franzblau SC, Hwang CH et al (2012) Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorg Med Chem 20:2214–2220CrossRef Moraski GC, Markley LD, Chang M, Cho S, Franzblau SC, Hwang CH et al (2012) Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorg Med Chem 20:2214–2220CrossRef
33.
Zurück zum Zitat Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198CrossRef Yamada Y, Yasuda H, Murota K, Nakamura M, Sodesawa T, Sato S (2013) Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48:8171–8198CrossRef
34.
Zurück zum Zitat Kim J, Yamada Y, Kawai M, Tanabe T, Sato S (2015) Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene. J Mater Sci 50:6739–6747CrossRef Kim J, Yamada Y, Kawai M, Tanabe T, Sato S (2015) Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene. J Mater Sci 50:6739–6747CrossRef
35.
Zurück zum Zitat Yamada Y, Sato S (2015) Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso 269:181–189CrossRef Yamada Y, Sato S (2015) Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso 269:181–189CrossRef
36.
Zurück zum Zitat Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084CrossRef Kim J, Yamada Y, Suzuki Y, Ciston J, Sato S (2014) Pyrolysis of epoxidized fullerenes analyzed by spectroscopies. J Phys Chem C 118:7076–7084CrossRef
37.
Zurück zum Zitat Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IMPublications and SurfaceSpectra Ltd., West Sussex and Manchester, pp 401–403 Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IMPublications and SurfaceSpectra Ltd., West Sussex and Manchester, pp 401–403
38.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Connecticut: Gaussian 09, Revision D.01. Gaussian Inc, Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Connecticut: Gaussian 09, Revision D.01. Gaussian Inc, Wallingford
39.
Zurück zum Zitat Lewis IC, Edstrom T (1963) Thermal reactivity of polynuclear aromatic hydrocarbons. J Org Chem 28:2050–2057CrossRef Lewis IC, Edstrom T (1963) Thermal reactivity of polynuclear aromatic hydrocarbons. J Org Chem 28:2050–2057CrossRef
40.
Zurück zum Zitat Tanaka Y (2015) Analysis of pyrolytic process of nitrogen-containing aromatic compounds. Master Thesis, Chiba University Tanaka Y (2015) Analysis of pyrolytic process of nitrogen-containing aromatic compounds. Master Thesis, Chiba University
41.
Zurück zum Zitat Brown MS, Jorio A, Corio P, Dresselhaus G, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit–Wigner–Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414CrossRef Brown MS, Jorio A, Corio P, Dresselhaus G, Dresselhaus G, Saito R, Kneipp K (2001) Origin of the Breit–Wigner–Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys Rev B 63:155414CrossRef
42.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef
43.
Zurück zum Zitat Sasaki K, Tokura Y, Sogawa T (2013) The origin of Raman D band: bonding and antibonding orbitals in graphene. Crystals 3:120–140CrossRef Sasaki K, Tokura Y, Sogawa T (2013) The origin of Raman D band: bonding and antibonding orbitals in graphene. Crystals 3:120–140CrossRef
44.
Zurück zum Zitat Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc Lond A 362:2477–2512CrossRef Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc Lond A 362:2477–2512CrossRef
45.
Zurück zum Zitat Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80:440–447CrossRef Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Appl Phys 80:440–447CrossRef
46.
Zurück zum Zitat Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930CrossRef Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930CrossRef
47.
Zurück zum Zitat Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J Chem Phys 94:4161–4170CrossRef Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J Chem Phys 94:4161–4170CrossRef
48.
Zurück zum Zitat Larkin PJ (2011) IR and Raman spectroscopy. Principles and spectral interpretation. Elsevier Inc, Amsterdam, pp 86–90 Larkin PJ (2011) IR and Raman spectroscopy. Principles and spectral interpretation. Elsevier Inc, Amsterdam, pp 86–90
49.
Zurück zum Zitat Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, Massachusetts, pp 261–279CrossRef Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, Massachusetts, pp 261–279CrossRef
50.
Zurück zum Zitat Chen ZY, Zhao JP, Yano T, Ooie T, Yoneda M, Sakakibara J (2000) Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy. J Appl Phys 88:2305–2308CrossRef Chen ZY, Zhao JP, Yano T, Ooie T, Yoneda M, Sakakibara J (2000) Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy. J Appl Phys 88:2305–2308CrossRef
51.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Raman scattering in fullerenes. J Raman Spectrosc 27:351–371CrossRef Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Raman scattering in fullerenes. J Raman Spectrosc 27:351–371CrossRef
52.
Zurück zum Zitat Tarrant RN, Warschkow O, McKenzie DR (2006) Raman spectra of partially oriented sp2 carbon films: experimental and modelled. Vib Spectrosc 41:232–239CrossRef Tarrant RN, Warschkow O, McKenzie DR (2006) Raman spectra of partially oriented sp2 carbon films: experimental and modelled. Vib Spectrosc 41:232–239CrossRef
53.
Zurück zum Zitat Colangeli L, Mennella V, Baratta GA, Bussoletti E, Strazzula G (1992) Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest. Astrophys J 396:369–377CrossRef Colangeli L, Mennella V, Baratta GA, Bussoletti E, Strazzula G (1992) Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest. Astrophys J 396:369–377CrossRef
Metadaten
Titel
Selective doping of nitrogen into carbon materials without catalysts
verfasst von
Yasuhiro Yamada
Shintaro Matsuo
Kouki Abe
Shingo Kubo
Satoshi Sato
Publikationsdatum
28.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0142-y

Weitere Artikel der Ausgabe 19/2016

Journal of Materials Science 19/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.