Skip to main content
Erschienen in: Journal of Materials Science 19/2016

30.06.2016 | Original Paper

PVP-modulated synthesis of NaV6O15 nanorods as cathode materials for high-capacity sodium-ion batteries

verfasst von: Xiaoyan Wang, Qian Liu, Hui Wang, Danlu Jiang, Yajing Chang, Ting Zhang, Bin Zhang, Haohan Mou, Yang Jiang

Erschienen in: Journal of Materials Science | Ausgabe 19/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly uniform NaV6O15 nanorods were obtained via a facile and low-cost PVP-modulated hydrothermal process. It is largely accepted that such a unique feature is favorable for rapid diffusion for sodium ions according to the intrinsic crystal structure. As the cathode, the as-prepared NaV6O15 nanorods are capable of delivering a high initial capacity of approximately 157 mA h g−1 at 20 mA g−1 for potentials ranging from 1.5 to 3.8 V and yielding 121 mA h g−1 at a high current density of 200 mA g−1. EIS analysis results demonstrated that the diffusion coefficients D Na as high as 2.71 × 10−12 cm2 s−1 at room temperature. In addition, it could be clearly observed that the NaV6O15 exhibited metallic behavior from the electron density of states, providing excellent electron conductivity. All these results suggest that NaV6O15 nanorods can be a very promising cathode for sodium batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kisuk K, Ying Shirley M, Julien B, Grey CP, Gerbrand C (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Cheminform 311(5763):977–980 Kisuk K, Ying Shirley M, Julien B, Grey CP, Gerbrand C (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Cheminform 311(5763):977–980
2.
Zurück zum Zitat Armand M, Tarascon J-M (2005) Building better batteries. Ind Laser Solut 451(7179):652–657 Armand M, Tarascon J-M (2005) Building better batteries. Ind Laser Solut 451(7179):652–657
3.
Zurück zum Zitat Luo C, Zhu Y, Wen Y, Wang J, Wang C (2014) Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries. Adv Funct Mater 24(26):4082–4089CrossRef Luo C, Zhu Y, Wen Y, Wang J, Wang C (2014) Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries. Adv Funct Mater 24(26):4082–4089CrossRef
4.
Zurück zum Zitat Zhang L, Xiang H, Zhu X, Yang W, Wang H (2011) Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method. J Mater Sci 47(7):3076–3081. doi:10.1007/s10853-011-6139-7 CrossRef Zhang L, Xiang H, Zhu X, Yang W, Wang H (2011) Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method. J Mater Sci 47(7):3076–3081. doi:10.​1007/​s10853-011-6139-7 CrossRef
5.
Zurück zum Zitat Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2014) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11(4):473–481CrossRef Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2014) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11(4):473–481CrossRef
6.
Zurück zum Zitat Liu H, Zhou H, Chen L, Tang Z, Yang W (2011) Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. J Power Sources 196(2):814–819CrossRef Liu H, Zhou H, Chen L, Tang Z, Yang W (2011) Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. J Power Sources 196(2):814–819CrossRef
8.
Zurück zum Zitat Blesa MC, Moran E, León C, Santamaria J, Tornero JD, Menéndez N (1999) α-NaFeO2: ionic conductivity and sodium extraction. Solid State Ion 126(1–2):81–87CrossRef Blesa MC, Moran E, León C, Santamaria J, Tornero JD, Menéndez N (1999) α-NaFeO2: ionic conductivity and sodium extraction. Solid State Ion 126(1–2):81–87CrossRef
9.
Zurück zum Zitat Yuliang C, Lifen X, Wei W, Daiwon C, Zimin N, Jianguo Y, Saraf LV, Zhenguo Y, Jun L (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23(28):3155–3160CrossRef Yuliang C, Lifen X, Wei W, Daiwon C, Zimin N, Jianguo Y, Saraf LV, Zhenguo Y, Jun L (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23(28):3155–3160CrossRef
10.
Zurück zum Zitat Braconnier JJ, Delmas C, Hagenmuller P (1982) Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Mater Res Bull 17(8):993–1000CrossRef Braconnier JJ, Delmas C, Hagenmuller P (1982) Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Mater Res Bull 17(8):993–1000CrossRef
11.
Zurück zum Zitat Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P (1981) Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 3–4:165–169CrossRef Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P (1981) Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 3–4:165–169CrossRef
12.
Zurück zum Zitat Yamauchi T, Ueda Y (2008) Superconducting β (β′) -vanadium bronzes under pressure. Phys Rev B Condens Matt 77(10):104529(1)–104529(18)CrossRef Yamauchi T, Ueda Y (2008) Superconducting β (β′) -vanadium bronzes under pressure. Phys Rev B Condens Matt 77(10):104529(1)–104529(18)CrossRef
13.
Zurück zum Zitat Patridge CJ, Tai-Lung W, Sambandamurthy G, Sarbajit B (2011) Colossal above-room-temperature metal—insulator switching of a Wadsley-type tunnel bronze. Chem Commun 47(15):4484–4486CrossRef Patridge CJ, Tai-Lung W, Sambandamurthy G, Sarbajit B (2011) Colossal above-room-temperature metal—insulator switching of a Wadsley-type tunnel bronze. Chem Commun 47(15):4484–4486CrossRef
14.
Zurück zum Zitat Suzuki T, Yamauchi I, Shimizu Y, Itoh M, Takeshita N, Terakura C, Takagi H, Tokura Y, Yamauchi T, Ueda Y (2009) High-pressure 51 V NMR study of the magnetic phase diagram and metal-insulator transition in quasi-one-dimensional β-Na0.33V2O5. Phys Rev B Condens Matt 79(8):081101(1)–081101(4) Suzuki T, Yamauchi I, Shimizu Y, Itoh M, Takeshita N, Terakura C, Takagi H, Tokura Y, Yamauchi T, Ueda Y (2009) High-pressure 51 V NMR study of the magnetic phase diagram and metal-insulator transition in quasi-one-dimensional β-Na0.33V2O5. Phys Rev B Condens Matt 79(8):081101(1)–081101(4)
15.
Zurück zum Zitat Wadsley AD (1955) The crystal structure of KAsF6. Acta Crystallogr 8(11):739–739CrossRef Wadsley AD (1955) The crystal structure of KAsF6. Acta Crystallogr 8(11):739–739CrossRef
16.
Zurück zum Zitat He H, Zeng X, Wang H, Chen N, Sun D, Tang Y, Huang X, Pan Y (2014) NaV6O15 nanoflakes with good cycling stability as a cathode for sodium ion battery. J Electrochem Soc 162(1):A39–A43CrossRef He H, Zeng X, Wang H, Chen N, Sun D, Tang Y, Huang X, Pan Y (2014) NaV6O15 nanoflakes with good cycling stability as a cathode for sodium ion battery. J Electrochem Soc 162(1):A39–A43CrossRef
17.
Zurück zum Zitat Bach S, Baffier N, Pereira-Ramos JP, Messina R (1989) Electrochemical sodium intercalation in Na0.33V2O5 bronze synthesized by a sol-gel process. Solid State Ion 37(1):41–49CrossRef Bach S, Baffier N, Pereira-Ramos JP, Messina R (1989) Electrochemical sodium intercalation in Na0.33V2O5 bronze synthesized by a sol-gel process. Solid State Ion 37(1):41–49CrossRef
18.
Zurück zum Zitat West K, Zachau-Christiansen B, Jacobsen T, Skaarup S (1988) Sodium insertion in vanadium oxides. Solid State Ion 28–30(3):1128–1131CrossRef West K, Zachau-Christiansen B, Jacobsen T, Skaarup S (1988) Sodium insertion in vanadium oxides. Solid State Ion 28–30(3):1128–1131CrossRef
19.
Zurück zum Zitat Pereira-Ramos JP, Messina R, Bach S, Baffier N (1990) Influence of the synthesis via a sol-gel process on the electrochemical lithium and sodium insertion in β-Na0.33V2O5. Solid State Ion 40–41:970–973CrossRef Pereira-Ramos JP, Messina R, Bach S, Baffier N (1990) Influence of the synthesis via a sol-gel process on the electrochemical lithium and sodium insertion in β-Na0.33V2O5. Solid State Ion 40–41:970–973CrossRef
20.
Zurück zum Zitat Jiang D, Wang H, Li G, Lan X, Abib MH, Zhang Z, Jiang Y (2015) Self-combustion synthesis and ion diffusion performance of NaV6O15 nanoplates as cathode materials for sodium-ion batteries. J Electrochem Soc 162(4):A697–A703CrossRef Jiang D, Wang H, Li G, Lan X, Abib MH, Zhang Z, Jiang Y (2015) Self-combustion synthesis and ion diffusion performance of NaV6O15 nanoplates as cathode materials for sodium-ion batteries. J Electrochem Soc 162(4):A697–A703CrossRef
21.
Zurück zum Zitat Wang H, Wang X, Wang L, Wang J, Jiang D, Li G, Zhang Y, Zhong H, Jiang Y (2015) Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J Phys Chem C 119(19):10197–10205CrossRef Wang H, Wang X, Wang L, Wang J, Jiang D, Li G, Zhang Y, Zhong H, Jiang Y (2015) Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J Phys Chem C 119(19):10197–10205CrossRef
22.
Zurück zum Zitat Wu X, Zhao Y, Yang C, He G (2015) PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J Mater Sci 50(12):4250–4257CrossRef Wu X, Zhao Y, Yang C, He G (2015) PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J Mater Sci 50(12):4250–4257CrossRef
23.
Zurück zum Zitat Xiao W, Wang Z, Guo H, Zhang Y, Zhang Q, Gan L (2013) A facile PVP-assisted hydrothermal fabrication of Fe2O3/Graphene composite as high performance anode material for lithium ion batteries. J Alloy Compd 560(3):208–214CrossRef Xiao W, Wang Z, Guo H, Zhang Y, Zhang Q, Gan L (2013) A facile PVP-assisted hydrothermal fabrication of Fe2O3/Graphene composite as high performance anode material for lithium ion batteries. J Alloy Compd 560(3):208–214CrossRef
24.
Zurück zum Zitat Huang G, Wei L, Sun H, Wang J, Zhang J, Jiang H, Fei Z (2013) Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance. Electrochim Acta 97(5):92–98CrossRef Huang G, Wei L, Sun H, Wang J, Zhang J, Jiang H, Fei Z (2013) Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance. Electrochim Acta 97(5):92–98CrossRef
25.
Zurück zum Zitat Zhang H, Ren X, Cui Z (2007) Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. J Cryst Growth 304(1):206–210CrossRef Zhang H, Ren X, Cui Z (2007) Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. J Cryst Growth 304(1):206–210CrossRef
26.
Zurück zum Zitat Deivaraj TC, Lala NL, Jy L (2005) Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 289(2):402–409CrossRef Deivaraj TC, Lala NL, Jy L (2005) Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 289(2):402–409CrossRef
27.
Zurück zum Zitat Park J, Kim JS, Park JW, Nam TH, Kim KW, Ahn JH, Wang G, Ahn HJ (2013) Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization. Electrochim Acta 92(1):427–432CrossRef Park J, Kim JS, Park JW, Nam TH, Kim KW, Ahn JH, Wang G, Ahn HJ (2013) Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization. Electrochim Acta 92(1):427–432CrossRef
28.
Zurück zum Zitat Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
29.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
30.
Zurück zum Zitat Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem 2(15):5358–5362CrossRef Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem 2(15):5358–5362CrossRef
31.
Zurück zum Zitat Baddour-Hadjean R, Bach S, Emery N, Pereira-Ramos JP (2011) The peculiar structural behaviour of β-Na0.33V2O5 upon electrochemical lithium insertion. J Mater Chem 21(30):11296–11305CrossRef Baddour-Hadjean R, Bach S, Emery N, Pereira-Ramos JP (2011) The peculiar structural behaviour of β-Na0.33V2O5 upon electrochemical lithium insertion. J Mater Chem 21(30):11296–11305CrossRef
32.
Zurück zum Zitat Liu H, Wang Y, Li L, Wang K, Hosono E, Zhou H (2009) Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J Mater Chem 19(42):7885–7891CrossRef Liu H, Wang Y, Li L, Wang K, Hosono E, Zhou H (2009) Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J Mater Chem 19(42):7885–7891CrossRef
33.
Zurück zum Zitat Wadsley AD (1955) The crystal structure of Na2−xV6O15. Acta Crystallogr 8(11):695–701CrossRef Wadsley AD (1955) The crystal structure of Na2−xV6O15. Acta Crystallogr 8(11):695–701CrossRef
34.
Zurück zum Zitat Wang H, Wang L, Wang X, Quan J, Mi L, Yuan L, Li G, Zhang B, Zhong H, Jiang Y (2016) High quality MoSe2 nanospheres with superior electrochemical properties for sodium batteries. J Electrochem Soc 163(8):A1627–A1632. doi:10.1149/2.0841608jes CrossRef Wang H, Wang L, Wang X, Quan J, Mi L, Yuan L, Li G, Zhang B, Zhong H, Jiang Y (2016) High quality MoSe2 nanospheres with superior electrochemical properties for sodium batteries. J Electrochem Soc 163(8):A1627–A1632. doi:10.​1149/​2.​0841608jes CrossRef
35.
Zurück zum Zitat Su J, Wu XL, Lee JS, Kim J, Guo YG (2013) A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J Mater Chem 1(7):2508–2514CrossRef Su J, Wu XL, Lee JS, Kim J, Guo YG (2013) A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J Mater Chem 1(7):2508–2514CrossRef
36.
Zurück zum Zitat Du K, Guo H, Hu G, Peng Z, Cao Y (2013) Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J Power Sources 223(1):284–288CrossRef Du K, Guo H, Hu G, Peng Z, Cao Y (2013) Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J Power Sources 223(1):284–288CrossRef
37.
Zurück zum Zitat Zhou X, Liu Y, Guo Y (2009) Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochim Acta 54(8):2253–2258CrossRef Zhou X, Liu Y, Guo Y (2009) Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochim Acta 54(8):2253–2258CrossRef
38.
Zurück zum Zitat Li G, Jiang D, Wang H, Lan X, Zhong H, Jiang Y (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265(1):325–334CrossRef Li G, Jiang D, Wang H, Lan X, Zhong H, Jiang Y (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265(1):325–334CrossRef
39.
Zurück zum Zitat Tao J, Pan W, Jian W, Bie X, Fei D, Wei Y, Wang C, Gang C (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim Acta 55(12):3864–3869CrossRef Tao J, Pan W, Jian W, Bie X, Fei D, Wei Y, Wang C, Gang C (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim Acta 55(12):3864–3869CrossRef
40.
Zurück zum Zitat Yujie Z, Yunhua X, Yihang L, Chao L, Chunsheng W (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2):780–787CrossRef Yujie Z, Yunhua X, Yihang L, Chao L, Chunsheng W (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2):780–787CrossRef
Metadaten
Titel
PVP-modulated synthesis of NaV6O15 nanorods as cathode materials for high-capacity sodium-ion batteries
verfasst von
Xiaoyan Wang
Qian Liu
Hui Wang
Danlu Jiang
Yajing Chang
Ting Zhang
Bin Zhang
Haohan Mou
Yang Jiang
Publikationsdatum
30.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 19/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0150-y

Weitere Artikel der Ausgabe 19/2016

Journal of Materials Science 19/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.