Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 8/2016

06.04.2016 | Original Paper

The Friction Factor in the Forchheimer Equation for Rock Fractures

verfasst von: Jia-Qing Zhou, Shao-Hua Hu, Yi-Feng Chen, Min Wang, Chuang-Bing Zhou

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The friction factor is an important dimensionless parameter for fluid flow through rock fractures that relates pressure head loss to average flow velocity; it can be affected by both fracture geometry and flow regime. In this study, a theoretical formula form of the friction factor containing both viscous and inertial terms is formulated by incorporating the Forchheimer equation, and a new friction factor model is proposed based on a recent phenomenological relation for the Forchheimer coefficient. The viscous term in the proposed formula is inversely proportional to Reynolds number and represents the limiting case in Darcy flow regime when the inertial effects diminish, whereas the inertial term is a power function of the relative roughness and represents a limiting case in fully turbulent flow regime when the fracture roughness plays a dominant role. The proposed model is compared with existing friction factor models for fractures through parametric sensitivity analyses and using experimental data on granite fractures, showing that the proposed model has not only clearer physical significance, but also better predictive performance. By accepting proper percentages of nonlinear pressure drop to quantify the onset of Forchheimer flow and fully turbulent flow, a Moody-type diagram with explicitly defined flow regimes is created for rock fractures of varying roughness, indicating that rougher fractures have a large friction factor and are more prone to the Forchheimer flow and fully turbulent flow. These findings may prove useful in better understanding of the flow behaviors in rock fractures and improving the numerical modeling of non-Darcy flow in fractured aquifers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arbhabhirama A, Dinoy AA (1973) Friction factor and Reynolds number in porous media flow. J Hydraul Div ASCE 99:901–911 Arbhabhirama A, Dinoy AA (1973) Friction factor and Reynolds number in porous media flow. J Hydraul Div ASCE 99:901–911
Zurück zum Zitat Cammarata G, Fidelibus C, Cravero M, Barla G (2007) The hydro-mechanically coupled response of rock fractures. Rock Mech Rock Eng 40(1):41–61CrossRef Cammarata G, Fidelibus C, Cravero M, Barla G (2007) The hydro-mechanically coupled response of rock fractures. Rock Mech Rock Eng 40(1):41–61CrossRef
Zurück zum Zitat Chen Z, Qian JZ, Luo SH, Zhan HB (2009) Experimental study of friction factor for groundwater flow in a single rough fracture. J Hydrodyn Ser B 21(6):820–825CrossRef Chen Z, Qian JZ, Luo SH, Zhan HB (2009) Experimental study of friction factor for groundwater flow in a single rough fracture. J Hydrodyn Ser B 21(6):820–825CrossRef
Zurück zum Zitat Chen Y, Hu S, Wei K, Hu R, Zhou C, Jing L (2014) Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite. Int J Rock Mech Min Sci 71:64–76 Chen Y, Hu S, Wei K, Hu R, Zhou C, Jing L (2014) Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite. Int J Rock Mech Min Sci 71:64–76
Zurück zum Zitat Chen YF, Hu SH, Hu R, Zhou CB (2015a) Estimating hydraulic conductivity of fractured rocks from high pressure packer tests with an Izbash’s law-based empirical model. Water Resour Res 51:2096–2118CrossRef Chen YF, Hu SH, Hu R, Zhou CB (2015a) Estimating hydraulic conductivity of fractured rocks from high pressure packer tests with an Izbash’s law-based empirical model. Water Resour Res 51:2096–2118CrossRef
Zurück zum Zitat Chen YF, Zhou JQ, Hu SH, Hu R, Zhou CB (2015b) Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. J Hydrol 529:993–1006CrossRef Chen YF, Zhou JQ, Hu SH, Hu R, Zhou CB (2015b) Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. J Hydrol 529:993–1006CrossRef
Zurück zum Zitat Cherubini C, Giasi CI, Pastore N (2012) Bench scale laboratory tests to analyze non-linear flow in fractured media. Hydrol Earth Syst Sci 9(4):5575–5609CrossRef Cherubini C, Giasi CI, Pastore N (2012) Bench scale laboratory tests to analyze non-linear flow in fractured media. Hydrol Earth Syst Sci 9(4):5575–5609CrossRef
Zurück zum Zitat Crandall D, Ahmadi G, Smith DH (2010) Computational modeling of fluid flow through a fracture in permeable rock. Transp Porous Med 84(2):493–510CrossRef Crandall D, Ahmadi G, Smith DH (2010) Computational modeling of fluid flow through a fracture in permeable rock. Transp Porous Med 84(2):493–510CrossRef
Zurück zum Zitat Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Deutsch Ing 45:1782–1788 Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Deutsch Ing 45:1782–1788
Zurück zum Zitat Fourar M, Bories S, Lenormand R, Persoff P (1993) Two-phase flow in smooth and rough fractures: measurement and correlation by porous-medium and pipe flow models. Water Resour Res 29(11):3699–3708CrossRef Fourar M, Bories S, Lenormand R, Persoff P (1993) Two-phase flow in smooth and rough fractures: measurement and correlation by porous-medium and pipe flow models. Water Resour Res 29(11):3699–3708CrossRef
Zurück zum Zitat Javadi M, Sharifzadeh M, Shahriar K, Mitani Y (2014) Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes. Water Resour Res 50(2):1789–1804CrossRef Javadi M, Sharifzadeh M, Shahriar K, Mitani Y (2014) Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes. Water Resour Res 50(2):1789–1804CrossRef
Zurück zum Zitat Kohl T, Evans KF, Hopkirk RJ, Jung R, Rybach L (1997) Observation and simulation of non-Darcian flow transients in fractured rock. Water Resour Res 33(3):407–418CrossRef Kohl T, Evans KF, Hopkirk RJ, Jung R, Rybach L (1997) Observation and simulation of non-Darcian flow transients in fractured rock. Water Resour Res 33(3):407–418CrossRef
Zurück zum Zitat Konzuk JS, Kueper BH (2004) Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour Res 40(2):W02402CrossRef Konzuk JS, Kueper BH (2004) Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour Res 40(2):W02402CrossRef
Zurück zum Zitat Li Y, Chen YF, Zhou CB (2014) Hydraulic properties of partially saturated rock fractures subjected to mechanical loading. Eng Geol 179:24–31CrossRef Li Y, Chen YF, Zhou CB (2014) Hydraulic properties of partially saturated rock fractures subjected to mechanical loading. Eng Geol 179:24–31CrossRef
Zurück zum Zitat Lomize GM (1951) Filtratsiya v treshchinovatykh porodakh. Gosenergoizdat, Moscow Lomize GM (1951) Filtratsiya v treshchinovatykh porodakh. Gosenergoizdat, Moscow
Zurück zum Zitat Louis C (1969) A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Imperial College of Science and Technology, London Louis C (1969) A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Imperial College of Science and Technology, London
Zurück zum Zitat Ma D, Miao XX, Chen ZQ, Mao XB (2013) Experimental investigation of seepage properties of fractured rocks under different confining pressures. Rock Mech Rock Eng 46(5):1135–1144CrossRef Ma D, Miao XX, Chen ZQ, Mao XB (2013) Experimental investigation of seepage properties of fractured rocks under different confining pressures. Rock Mech Rock Eng 46(5):1135–1144CrossRef
Zurück zum Zitat Masciopinto C (1999) Particles’ transport in a single fracture under variable flow regimes. Adv Eng Softw 30(5):327–337CrossRef Masciopinto C (1999) Particles’ transport in a single fracture under variable flow regimes. Adv Eng Softw 30(5):327–337CrossRef
Zurück zum Zitat Masciopinto C, La Mantia R, Chrysikopoulos CV (2008) Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy. Water Resour Res 44(1):W01404CrossRef Masciopinto C, La Mantia R, Chrysikopoulos CV (2008) Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy. Water Resour Res 44(1):W01404CrossRef
Zurück zum Zitat McDermott CI and Kolditz O (2004) Hydraulic-geomechanical effective stress model: determination of discrete fracture network parameters from a pump test and application to geothermal reservoir modelling. In: Proceedings of 29th workshop on geothermal reservoir engineering, Stanford University, Stanford, SGP-TR-175 McDermott CI and Kolditz O (2004) Hydraulic-geomechanical effective stress model: determination of discrete fracture network parameters from a pump test and application to geothermal reservoir modelling. In: Proceedings of 29th workshop on geothermal reservoir engineering, Stanford University, Stanford, SGP-TR-175
Zurück zum Zitat Moody LF (1944) Friction factors for pipe flow. Trans Asme 66(8):671–684 Moody LF (1944) Friction factors for pipe flow. Trans Asme 66(8):671–684
Zurück zum Zitat Moutsopoulos KN (2009) Exact and approximate analytical solutions for unsteady fully developed turbulent flow in porous media and fractures for time dependent boundary conditions. J Hydrol 369(1):78–89CrossRef Moutsopoulos KN (2009) Exact and approximate analytical solutions for unsteady fully developed turbulent flow in porous media and fractures for time dependent boundary conditions. J Hydrol 369(1):78–89CrossRef
Zurück zum Zitat Nazridoust K, Ahmadi G, Smith DH (2006) A new friction factor correlation for laminar, single-phase flows through rock fractures. J Hydrol 329(1–2):315–328CrossRef Nazridoust K, Ahmadi G, Smith DH (2006) A new friction factor correlation for laminar, single-phase flows through rock fractures. J Hydrol 329(1–2):315–328CrossRef
Zurück zum Zitat Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. VDI Forschumgsheft 361, Verein Deutscher Ingenieure. (in German) Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. VDI Forschumgsheft 361, Verein Deutscher Ingenieure. (in German)
Zurück zum Zitat Nowamooz A, Radilla G, Fourar M (2009) Non-Darcian two-phase flow in a transparent replica of a rough-walled rock fracture. Water Resour Res 45(7):W07406CrossRef Nowamooz A, Radilla G, Fourar M (2009) Non-Darcian two-phase flow in a transparent replica of a rough-walled rock fracture. Water Resour Res 45(7):W07406CrossRef
Zurück zum Zitat Pyrak-Nolte LJ, Myer LR, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock, In: Proceedings of the Sixth International Congress on Rock Mechanics, pp 225–231 Pyrak-Nolte LJ, Myer LR, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock, In: Proceedings of the Sixth International Congress on Rock Mechanics, pp 225–231
Zurück zum Zitat Qian J, Zhan H, Zhao W, Sun F (2005) Experimental study of turbulent unconfined groundwater flow in a single fracture. J Hydrol 311(1):134–142CrossRef Qian J, Zhan H, Zhao W, Sun F (2005) Experimental study of turbulent unconfined groundwater flow in a single fracture. J Hydrol 311(1):134–142CrossRef
Zurück zum Zitat Qian J, Chen Z, Zhan H, Guan H (2011) Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures: a check of local cubic law. Hydrol Process 25(4):614–622CrossRef Qian J, Chen Z, Zhan H, Guan H (2011) Experimental study of the effect of roughness and Reynolds number on fluid flow in rough-walled single fractures: a check of local cubic law. Hydrol Process 25(4):614–622CrossRef
Zurück zum Zitat Ranjith PG, Darlington W (2007) Nonlinear single-phase flow in real rock joints. Water Resour Res 43(9):W09502CrossRef Ranjith PG, Darlington W (2007) Nonlinear single-phase flow in real rock joints. Water Resour Res 43(9):W09502CrossRef
Zurück zum Zitat Schrauf TW, Evans DD (1986) Laboratory studies of gas flow through a single natural fracture. Water Resour Res 22(7):1038–1050CrossRef Schrauf TW, Evans DD (1986) Laboratory studies of gas flow through a single natural fracture. Water Resour Res 22(7):1038–1050CrossRef
Zurück zum Zitat Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA (2007) Determination of Forchheimer equation coefficients a and b. Hydrol Process 21(4):534–554CrossRef Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA (2007) Determination of Forchheimer equation coefficients a and b. Hydrol Process 21(4):534–554CrossRef
Zurück zum Zitat Singh KK, Singh DN, Ranjith PG (2015) Laboratory simulation of flow through single fractured granite. Rock Mech Rock Eng 48(3):987–1000CrossRef Singh KK, Singh DN, Ranjith PG (2015) Laboratory simulation of flow through single fractured granite. Rock Mech Rock Eng 48(3):987–1000CrossRef
Zurück zum Zitat Skjetne E, Hansen A, Gudmundsson JS (1999) High-velocity flow in a rough fracture. J Fluid Mech 383:1–28CrossRef Skjetne E, Hansen A, Gudmundsson JS (1999) High-velocity flow in a rough fracture. J Fluid Mech 383:1–28CrossRef
Zurück zum Zitat Tzelepis V, Moutsopoulos KN, Papaspyros JN, Tsihrintzis VA (2015) Experimental investigation of flow behavior in smooth and rough artificial fractures. J Hydrol 521:108–118CrossRef Tzelepis V, Moutsopoulos KN, Papaspyros JN, Tsihrintzis VA (2015) Experimental investigation of flow behavior in smooth and rough artificial fractures. J Hydrol 521:108–118CrossRef
Zurück zum Zitat Ulusay R, Hudson JA (2007) The complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974–2006. Compilation arranged by the ISRM Turkish National Group, Ankara, Turkey Ulusay R, Hudson JA (2007) The complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974–2006. Compilation arranged by the ISRM Turkish National Group, Ankara, Turkey
Zurück zum Zitat Wang L, Cardenas MB, Slottke DT, Ketcham RA, Sharp JM (2015) Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour Res 51(4):2064–2080CrossRef Wang L, Cardenas MB, Slottke DT, Ketcham RA, Sharp JM (2015) Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour Res 51(4):2064–2080CrossRef
Zurück zum Zitat Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Media 25(1):27–61CrossRef Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Media 25(1):27–61CrossRef
Zurück zum Zitat White FM (2003) Fluid mechanics. McGraw-Hill, Boston White FM (2003) Fluid mechanics. McGraw-Hill, Boston
Zurück zum Zitat Zhang Z, Nemcik J (2013a) Friction factor of water flow through rough rock fractures. Rock Mech Rock Eng 46(5):1125–1134CrossRef Zhang Z, Nemcik J (2013a) Friction factor of water flow through rough rock fractures. Rock Mech Rock Eng 46(5):1125–1134CrossRef
Zurück zum Zitat Zhang Z, Nemcik J (2013b) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol 477:139–151CrossRef Zhang Z, Nemcik J (2013b) Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. J Hydrol 477:139–151CrossRef
Zurück zum Zitat Zhang Z, Nemcik J, Qiao Q, Geng X (2015) A model for water flow through rock fractures based on friction factor. Rock Mech Rock Eng 48(2):559–571CrossRef Zhang Z, Nemcik J, Qiao Q, Geng X (2015) A model for water flow through rock fractures based on friction factor. Rock Mech Rock Eng 48(2):559–571CrossRef
Zurück zum Zitat Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behaviors at low Reynolds number through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci 80:202–218 Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behaviors at low Reynolds number through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci 80:202–218
Zurück zum Zitat Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30CrossRef Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30CrossRef
Zurück zum Zitat Zimmerman RW, Al-Yaarubi A, Pain CC, Grattoni CA (2004) Nonlinear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41:1A27 Zimmerman RW, Al-Yaarubi A, Pain CC, Grattoni CA (2004) Nonlinear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41:1A27
Zurück zum Zitat Zou L, Tarasov BG, Dyskin AV, Adhikary DP, Pasternak E, Xu W (2013) Physical modelling of stress-dependent permeability in fractured rocks. Rock Mech Rock Eng 46(1):67–81CrossRef Zou L, Tarasov BG, Dyskin AV, Adhikary DP, Pasternak E, Xu W (2013) Physical modelling of stress-dependent permeability in fractured rocks. Rock Mech Rock Eng 46(1):67–81CrossRef
Metadaten
Titel
The Friction Factor in the Forchheimer Equation for Rock Fractures
verfasst von
Jia-Qing Zhou
Shao-Hua Hu
Yi-Feng Chen
Min Wang
Chuang-Bing Zhou
Publikationsdatum
06.04.2016
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 8/2016
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-0960-x

Weitere Artikel der Ausgabe 8/2016

Rock Mechanics and Rock Engineering 8/2016 Zur Ausgabe