Skip to main content

2016 | OriginalPaper | Buchkapitel

The GGM Function Family Is a Weakly One-Way Family of Functions

verfasst von : Aloni Cohen, Saleet Klein

Erschienen in: Theory of Cryptography

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We give the first demonstration of the cryptographic hardness of the Goldreich-Goldwasser-Micali (GGM) function family when the secret key is exposed. We prove that for any constant \(\epsilon >0\), the GGM family is a \(1/n^{2+\epsilon }\)-weakly one-way family of functions, when the lengths of secret key, inputs, and outputs are equal. Namely, any efficient algorithm fails to invert GGM with probability at least \(1/n^{2+\epsilon }\)even when given the secret key.
Additionally, we state natural conditions under which the GGM family is strongly one-way.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
And posed much earlier by Micali and by Barak: see Acknowledgments of [Gol02].
 
2
We consider the secret keys, inputs, and outputs to be of the same lengths. See Remark 2.
 
3
While these are indeed facts in the land of wishful thinking, they are not generally true. In this overview we wish to highlight only the usefulness of these facts, and believe that their proofs (though elementary), do not further this goal.
 
4
For example, the distribution \((x,\mathsf {Bernoulli(x)})_{\mathsf {Uniform[0,1]}}\) is the distribution over (xb) by drawing the parameter x uniformly from [0, 1], and subsequently taking a sample b from the Bernoulli distribution with parameter x.
 
5
Whether this indeed holds depends on the PRG used to instantiate the GGM ensemble. We do not know if such a PRG exists.
 
6
If there exists a PRG, then there exists a PRG such that \(\text {SD}(D_{\mathsf {owf}},D_{\mathsf {rand}})= 1 - {\mathbb E}_{s\leftarrow U_n}[|\mathsf {Img}(f_s)|/2^n]\ge 1-1/n^2\). For example, if the PRG only uses the first n / 2 bits of its input, then \(|\mathsf {Img}(f_s)|< 2^{n/2+1}\).
 
7
This essentially a data-processing inequality.
 
Literatur
[BGI14]
[BGI15]
Zurück zum Zitat Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6_12 Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46803-6_​12
[BLL+15]
Zurück zum Zitat Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6_1 CrossRef Bai, S., Langlois, A., Lepoint, T., Stehlé, D., Steinfeld, R.: Improved security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 3–24. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-48797-6_​1 CrossRef
[BW13]
[CGH04]
[GGM86]
[Gol02]
Zurück zum Zitat Goldreich, O.: The GGM construction does not yield correlation intractable function ensembles (2002) Goldreich, O.: The GGM construction does not yield correlation intractable function ensembles (2002)
[Gol04]
Zurück zum Zitat Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefMATH Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefMATH
[KPTZ13]
Zurück zum Zitat Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 669–684 (2013) Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 669–684 (2013)
[LR88]
Zurück zum Zitat Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)MathSciNetCrossRefMATH Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)MathSciNetCrossRefMATH
[SW14]
Zurück zum Zitat Sahai, A., Waters, B.: How to use indistinguishability obfuscation, deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, 31 May–3 June 2014, pp. 475–484. ACM, New York (2014) Sahai, A., Waters, B.: How to use indistinguishability obfuscation, deniable encryption, and more. In: Symposium on Theory of Computing, STOC 2014, 31 May–3 June 2014, pp. 475–484. ACM, New York (2014)
[Val84]
[Zha12]
Zurück zum Zitat Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 679–687. IEEE (2012) Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 679–687. IEEE (2012)
Metadaten
Titel
The GGM Function Family Is a Weakly One-Way Family of Functions
verfasst von
Aloni Cohen
Saleet Klein
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53641-4_4

Premium Partner