Skip to main content
Erschienen in: Cellulose 4/2020

06.12.2019 | Original Research

The kinetics of thermal processes in imidazole-doped nanocrystalline cellulose solid proton conductor

verfasst von: Michał Bielejewski, Łukasz Lindner, Radosław Pankiewicz, Jadwiga Tritt-Goc

Erschienen in: Cellulose | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Proton conductors play an important role amongst ionically conducting systems. Being a common phenomenon in liquids, the protonic conduction in solids is rather rare and suffers from low values. However, due to potential applications in modern devices, e.g., fuel cells, sensors, or solid-state-high-density batteries, there is much interest in proton-conducting solids. To make progress on that field, newly synthesized materials must show increased performance in terms of conductivity, thermal stability, and non-toxicity. The unremitting pressure for increasing the protonic conductivity in solids caused the majority of the research is devoted to this aspect. The environment impact of new materials can be controlled by appropriate chemical composition. Therefore, during the synthesis process, components that are neutral to the habitat are used. Here, the chemical composition of nanocomposite solid-state proton conductor under investigation is based on cellulose nanocrystals and imidazole molecules that provide a neutral influence on the environment. The conductive properties of the proton conductor under consideration were the subject of our previous work. In this paper, we are going to investigate the thermal properties and kinetics of thermal processes acting in the proposed nanocomposite proton conductor to determine its thermal stability and application potential. The combined experimental approach of thermal gravimetric analysis and differential scanning calorimetry was used. Based on the obtained results, the activation energies of the decomposition stages were determined. The evolution of the thermal processes with the conversion degree was studied, and the lifetime of the nanocomposite at various external thermic conditions was tested. The kinetic DSC study has confirmed that the imidazole molecules are attached to the glucose ring of the cellulose in two ways, indirectly through the residual water molecules and directly to the hydroxyl group of the cellulose. Obtained results have shown that the stability and durability on the thermal conditions of the compound are still not satisfactory for commercial applications. However, proposed material can work under anhydrous conditions, thus can constitute a possible substitution for materials that need hydrated conditions to work, like Nafion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31 Akahira T, Sunose T (1971) Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol) 16:22–31
Zurück zum Zitat Alves A, Figueiredo A (1988) Pyrolysis kinetics of lignocellulosic materials by multistage isothermal thermogravimetry. J Anal Appl Pyrolysis 13:123–134CrossRef Alves A, Figueiredo A (1988) Pyrolysis kinetics of lignocellulosic materials by multistage isothermal thermogravimetry. J Anal Appl Pyrolysis 13:123–134CrossRef
Zurück zum Zitat Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci VI:639–642CrossRef Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci VI:639–642CrossRef
Zurück zum Zitat Flynn JH (1997) The “temperature integral”—its use and abuse. Thermochim Acta 300:83–92CrossRef Flynn JH (1997) The “temperature integral”—its use and abuse. Thermochim Acta 300:83–92CrossRef
Zurück zum Zitat Flynn JH (1983) The isoconverslonal method for determination of energy of activation at constant heating rates. J Therm Anal 27:95–102CrossRef Flynn JH (1983) The isoconverslonal method for determination of energy of activation at constant heating rates. J Therm Anal 27:95–102CrossRef
Zurück zum Zitat Flynn JH, Wall LA (1966a) A quick, direct method for the determination of activation energy from’ thermogravimetric data. Polym Lett 4:323–328CrossRef Flynn JH, Wall LA (1966a) A quick, direct method for the determination of activation energy from’ thermogravimetric data. Polym Lett 4:323–328CrossRef
Zurück zum Zitat Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRef Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRef
Zurück zum Zitat Sbirrazzuoli N, Girault Y, Elegant L (1997) Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—peak maximum evolution methods and isoconversional methods. Thermochim Acta 293:25–37CrossRef Sbirrazzuoli N, Girault Y, Elegant L (1997) Simulations for evaluation of kinetic methods in differential scanning calorimetry. Part 3—peak maximum evolution methods and isoconversional methods. Thermochim Acta 293:25–37CrossRef
Zurück zum Zitat Zhao J, Li X (2020) A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques. DP AGDL: Anode gas diffusion layer, ACL: Anode catalyst layer, PEM: polymer electrolyte membrane, CGDL: Cathode gas diffusion layer, CCL: Cathode catalyst layer, DP: Distribution plate. Energy Convers Manag 199:112022. https://doi.org/10.1016/j.enconman.2019.112022 CrossRef Zhao J, Li X (2020) A review of polymer electrolyte membrane fuel cell durability for vehicular applications: degradation modes and experimental techniques. DP AGDL: Anode gas diffusion layer, ACL: Anode catalyst layer, PEM: polymer electrolyte membrane, CGDL: Cathode gas diffusion layer, CCL: Cathode catalyst layer, DP: Distribution plate. Energy Convers Manag 199:112022. https://​doi.​org/​10.​1016/​j.​enconman.​2019.​112022 CrossRef
Metadaten
Titel
The kinetics of thermal processes in imidazole-doped nanocrystalline cellulose solid proton conductor
verfasst von
Michał Bielejewski
Łukasz Lindner
Radosław Pankiewicz
Jadwiga Tritt-Goc
Publikationsdatum
06.12.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 4/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02898-9

Weitere Artikel der Ausgabe 4/2020

Cellulose 4/2020 Zur Ausgabe