Skip to main content

2014 | OriginalPaper | Buchkapitel

6. The Langevin Equation

verfasst von : Grigorios A. Pavliotis

Erschienen in: Stochastic Processes and Applications

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we study the Langevin equation and the associated Fokker –Planck equation. In Sect. 6.1, we introduce the equation and study some of the main properties of the corresponding Fokker–Planck equation. In Sect. 6.2 we give an elementary introduction to the theories of hypoellipticity and hypocoercivity. In Sect. 6.3, we calculate the spectrum of the generator and Fokker–Planck operators for the Langevin equation in a harmonic potential. In Sect. 6.4, we study Hermite polynomial expansions of solutions to the Fokker–Planck equation. In Sect. 6.5, we study the overdamped and underdamped limits for the Langevin equation. In Sect. 6.6, we study the problem of Brownian motion in a periodic potential. Bibliographical remarks and exercises can be found in Sects. 6.7 and 6.8, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Hamilton’s equations of motion are \(\dot{q} = \frac{\partial H} {\partial p} = p,\,\dot{p} = -\frac{\partial H} {\partial p} = -\nabla V (q)\). The Hamiltonian vector field is b(q, p) = (p, −∇V ). The corresponding Liouville operator is given by B. See Sect. 3.​4.​
 
2
Let A and B denote the first-order differential operators corresponding to the vector fields A(x) and B(x), i.e., \(A =\sum _{j}A_{j}(x) \frac{\partial } {\partial q_{i}},\;B =\sum _{j}B_{j}(x) \frac{\partial } {\partial q_{j}}\). The commutator between A and B is [A, B] = ABBA.
 
3
This section was written in collaboration with M. Ottobre.
 
4
In other words, the exponentially fast convergence to equilibrium for the reversible Smoluchowski dynamics follows directly from the assumption that e V satisfies a Poincaré inequality.
 
5
One can prove that the space \(\mathcal{K}^{\perp }\) is the same irrespective of whether we consider the scalar product \(\langle \cdot,\cdot \rangle\) of \(\mathcal{H}\) or the scalar product \(\langle \cdot,\cdot \rangle _{\mathcal{H}^{1}}\) associated with the norm \(\|\cdot \|_{\mathcal{H}^{1}}\).
 
6
We assume that ∫ e V dq = 1.
 
7
Note that the invariant distribution of (6.95) is independent of \(\varepsilon\).
 
8
In order to avoid initial layers, we need to assume that the initial condition is a function of the Hamiltonian. We will not study the technical issue of initial layers.
 
9
\(\langle \ell^{2}\rangle\) will not, in general, be equal to the period of the potential, with the exception of the high-friction regime.
 
10
This is a familiar trick from the theory of homogenization for partial differential equations with periodic coefficients. For example, to study the PDE
$$\displaystyle{-\nabla \cdot \left (A\left (x, \frac{x} {\varepsilon } \right )\nabla u^{\varepsilon }\right ) = f\,,}$$
where the matrix-valued function A is periodic in its second argument, it is convenient to set \(z = \frac{x} {\varepsilon }\) and to treat x and z as independent variables.
 
Literatur
[13]
Zurück zum Zitat R. Balescu. Statistical dynamics. Matter out of equilibrium. Imperial College Press, London, 1997. R. Balescu. Statistical dynamics. Matter out of equilibrium. Imperial College Press, London, 1997.
[17]
Zurück zum Zitat A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam, 1978. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures, volume 5 of Studies in Mathematics and Its Applications. North-Holland Publishing Co., Amsterdam, 1978.
[25]
Zurück zum Zitat N. Bleistein and R. A. Handelsman. Asymptotic expansions of integrals. Dover Publications Inc., New York, second edition, 1986. N. Bleistein and R. A. Handelsman. Asymptotic expansions of integrals. Dover Publications Inc., New York, second edition, 1986.
[33]
Zurück zum Zitat S. Cerrai and M. Freidlin. On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom. Probab. Theory Related Fields, 135(3):363–394, 2006.CrossRefMATHMathSciNet S. Cerrai and M. Freidlin. On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom. Probab. Theory Related Fields, 135(3):363–394, 2006.CrossRefMATHMathSciNet
[34]
Zurück zum Zitat S. Cerrai and M. Freidlin. Smoluchowski-Kramers approximation for a general class of SPDEs. J. Evol. Equ., 6(4):657–689, 2006.CrossRefMATHMathSciNet S. Cerrai and M. Freidlin. Smoluchowski-Kramers approximation for a general class of SPDEs. J. Evol. Equ., 6(4):657–689, 2006.CrossRefMATHMathSciNet
[41]
Zurück zum Zitat S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics. Interscience, New York, 1962. S. R. de Groot and P. Mazur. Non-equilibrium thermodynamics. Interscience, New York, 1962.
[43]
Zurück zum Zitat L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1–42, 2001.CrossRefMATHMathSciNet L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1–42, 2001.CrossRefMATHMathSciNet
[44]
Zurück zum Zitat L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math., 159(2):245–316, 2005.CrossRefMATHMathSciNet L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math., 159(2):245–316, 2005.CrossRefMATHMathSciNet
[49]
[58]
Zurück zum Zitat J. C. M. Fok, B. Guo, and T. Tang. Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comp., 71(240): 1497–1528 (electronic), 2002. J. C. M. Fok, B. Guo, and T. Tang. Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comp., 71(240): 1497–1528 (electronic), 2002.
[61]
Zurück zum Zitat M. I. Freidlin and A. D. Wentzell. Random perturbations of Hamiltonian systems. Mem. Amer. Math. Soc., 109(523):viii+82, 1994. M. I. Freidlin and A. D. Wentzell. Random perturbations of Hamiltonian systems. Mem. Amer. Math. Soc., 109(523):viii+82, 1994.
[62]
Zurück zum Zitat M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems, volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, third edition, 2012. Translated from the 1979 Russian original by Joseph Szücs. M. I. Freidlin and A. D. Wentzell. Random perturbations of dynamical systems, volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, third edition, 2012. Translated from the 1979 Russian original by Joseph Szücs.
[79]
Zurück zum Zitat M. Hairer and G. A. Pavliotis. From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys., 131(1):175–202, 2008.CrossRefMATHMathSciNet M. Hairer and G. A. Pavliotis. From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys., 131(1):175–202, 2008.CrossRefMATHMathSciNet
[82]
Zurück zum Zitat P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62(2):251–341, 1990.CrossRefMathSciNet P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years after Kramers. Rev. Modern Phys., 62(2):251–341, 1990.CrossRefMathSciNet
[85]
Zurück zum Zitat B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005. B. Helffer and F. Nier. Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, volume 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.
[86]
Zurück zum Zitat F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal., 171(2):151–218, 2004.CrossRefMATHMathSciNet F. Hérau and F. Nier. Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal., 171(2):151–218, 2004.CrossRefMATHMathSciNet
[108]
Zurück zum Zitat V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik. Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994.CrossRef V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik. Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin, 1994.CrossRef
[118]
Zurück zum Zitat T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov processes, volume 345 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2012. Time symmetry and martingale approximation. T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov processes, volume 345 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2012. Time symmetry and martingale approximation.
[120]
Zurück zum Zitat S. M. Kozlov. Effective diffusion for the Fokker-Planck equation. Mat. Zametki, 45(5):19–31, 124, 1989. S. M. Kozlov. Effective diffusion for the Fokker-Planck equation. Mat. Zametki, 45(5):19–31, 124, 1989.
[121]
Zurück zum Zitat S. M. Kozlov. Geometric aspects of averaging. Uspekhi Mat. Nauk, 44(2(266)):79–120, 1989. S. M. Kozlov. Geometric aspects of averaging. Uspekhi Mat. Nauk, 44(2(266)):79–120, 1989.
[122]
Zurück zum Zitat H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7:284–304, 1940.CrossRefMATHMathSciNet H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7:284–304, 1940.CrossRefMATHMathSciNet
[140]
Zurück zum Zitat S. Lifson and J. L. Jackson. On the self–diffusion of ions in polyelectrolytic solution. J. Chem. Phys, 36:2410, 1962.CrossRef S. Lifson and J. L. Jackson. On the self–diffusion of ions in polyelectrolytic solution. J. Chem. Phys, 36:2410, 1962.CrossRef
[164]
Zurück zum Zitat G. Metafune, D. Pallara, and E. Priola. Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures. J. Funct. Anal., 196(1):40–60, 2002.CrossRefMATHMathSciNet G. Metafune, D. Pallara, and E. Priola. Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures. J. Funct. Anal., 196(1):40–60, 2002.CrossRefMATHMathSciNet
[165]
Zurück zum Zitat J. Meyer and J. Schröter. Proper and normal solutions of the Fokker-Planck equation. Arch. Rational Mech. Anal., 76(3):193–246, 1981.CrossRefMATHMathSciNet J. Meyer and J. Schröter. Proper and normal solutions of the Fokker-Planck equation. Arch. Rational Mech. Anal., 76(3):193–246, 1981.CrossRefMATHMathSciNet
[166]
Zurück zum Zitat J. Meyer and J. Schröter. Comments on the Grad procedure for the Fokker-Planck equation. J. Statist. Phys., 32(1):53–69, 1983.CrossRefMathSciNet J. Meyer and J. Schröter. Comments on the Grad procedure for the Fokker-Planck equation. J. Statist. Phys., 32(1):53–69, 1983.CrossRefMathSciNet
[171]
Zurück zum Zitat E. Nelson. Dynamical theories of Brownian motion. Princeton University Press, Princeton, N.J., 1967.MATH E. Nelson. Dynamical theories of Brownian motion. Princeton University Press, Princeton, N.J., 1967.MATH
[177]
Zurück zum Zitat D. Nualart. The Malliavin calculus and related topics. Probability and Its Applications (New York). Springer-Verlag, Berlin, second edition, 2006. D. Nualart. The Malliavin calculus and related topics. Probability and Its Applications (New York). Springer-Verlag, Berlin, second edition, 2006.
[180]
Zurück zum Zitat M. Ottobre, G. A. Pavliotis, and K. Pravda-Starov. Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal., 262(9):4000–4039, 2012.CrossRefMATHMathSciNet M. Ottobre, G. A. Pavliotis, and K. Pravda-Starov. Exponential return to equilibrium for hypoelliptic quadratic systems. J. Funct. Anal., 262(9):4000–4039, 2012.CrossRefMATHMathSciNet
[183]
Zurück zum Zitat G. A. Pavliotis and A. Vogiannou. Diffusive transport in periodic potentials: Underdamped dynamics. Fluct. Noise Lett., 8(2):L155–173, 2008.CrossRefMathSciNet G. A. Pavliotis and A. Vogiannou. Diffusive transport in periodic potentials: Underdamped dynamics. Fluct. Noise Lett., 8(2):L155–173, 2008.CrossRefMathSciNet
[184]
Zurück zum Zitat G. A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344:331–345, 2005.CrossRefMATH G. A. Pavliotis. A multiscale approach to Brownian motors. Phys. Lett. A, 344:331–345, 2005.CrossRefMATH
[185]
Zurück zum Zitat G. A. Pavliotis and A. M. Stuart. Multiscale methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization. G. A. Pavliotis and A. M. Stuart. Multiscale methods, volume 53 of Texts in Applied Mathematics. Springer, New York, 2008. Averaging and homogenization.
[197]
Zurück zum Zitat P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi, and A. Perez-Madrid. Diffusion in tilted periodic potentials: enhancement, universality and scaling. Phys. Rev. E, 65(3):031104, 2002. P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi, and A. Perez-Madrid. Diffusion in tilted periodic potentials: enhancement, universality and scaling. Phys. Rev. E, 65(3):031104, 2002.
[198]
Zurück zum Zitat P. Reimann, C. Van den Broeck, H. Linke, J. M. Rubi, and A. Perez-Madrid. Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Let., 87(1):010602, 2001. P. Reimann, C. Van den Broeck, H. Linke, J. M. Rubi, and A. Perez-Madrid. Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Let., 87(1):010602, 2001.
[199]
Zurück zum Zitat P. Resibois and M. De Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977. P. Resibois and M. De Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977.
[206]
Zurück zum Zitat H. Risken. The Fokker-Planck equation, volume 18 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1989. H. Risken. The Fokker-Planck equation, volume 18 of Springer Series in Synergetics. Springer-Verlag, Berlin, 1989.
[210]
Zurück zum Zitat H. Rodenhausen. Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Statist. Phys., 55(5–6):1065–1088, 1989.CrossRefMATHMathSciNet H. Rodenhausen. Einstein’s relation between diffusion constant and mobility for a diffusion model. J. Statist. Phys., 55(5–6):1065–1088, 1989.CrossRefMATHMathSciNet
[212]
Zurück zum Zitat L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. L. C. G. Rogers and D. Williams. Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000.
[215]
Zurück zum Zitat J. Schröter. The complete Chapman-Enskog procedure for the Fokker-Planck equation. Arch. Rational. Mech. Anal., 66(2):183–199, 1977.CrossRefMATHMathSciNet J. Schröter. The complete Chapman-Enskog procedure for the Fokker-Planck equation. Arch. Rational. Mech. Anal., 66(2):183–199, 1977.CrossRefMATHMathSciNet
[222]
Zurück zum Zitat R.B. Sowers. A boundary layer theory for diffusively perturbed transport around a heteroclinic cycle. Comm. Pure Appl. Math., 58(1):30–84, 2005.CrossRefMATHMathSciNet R.B. Sowers. A boundary layer theory for diffusively perturbed transport around a heteroclinic cycle. Comm. Pure Appl. Math., 58(1):30–84, 2005.CrossRefMATHMathSciNet
[225]
Zurück zum Zitat R. L. Stratonovich. Topics in the theory of random noise. Vol. II. Revised English edition. Translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York, 1967. R. L. Stratonovich. Topics in the theory of random noise. Vol. II. Revised English edition. Translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York, 1967.
[232]
Zurück zum Zitat G. Teschl. Mathematical methods in quantum mechanics, volume 99 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009. With applications to Schrödinger operators. G. Teschl. Mathematical methods in quantum mechanics, volume 99 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009. With applications to Schrödinger operators.
[233]
Zurück zum Zitat U. M. Titulaer. A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case. Phys. A, 91(3–4): 321–344, 1978.CrossRefMathSciNet U. M. Titulaer. A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case. Phys. A, 91(3–4): 321–344, 1978.CrossRefMathSciNet
[237]
Zurück zum Zitat C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009. C. Villani. Hypocoercivity. Mem. Amer. Math. Soc., 202(950):iv+141, 2009.
[242]
Zurück zum Zitat D. Wycoff and N. L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation. Phys. A, 146(1–2):175–200, 1987.CrossRefMathSciNet D. Wycoff and N. L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation. Phys. A, 146(1–2):175–200, 1987.CrossRefMathSciNet
[243]
Zurück zum Zitat D. Wycoff and N. L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation with a weak magnetic field. Phys. A, 146(1–2): 201–218, 1987.CrossRefMathSciNet D. Wycoff and N. L. Balazs. Multiple time scales analysis for the Kramers-Chandrasekhar equation with a weak magnetic field. Phys. A, 146(1–2): 201–218, 1987.CrossRefMathSciNet
[246]
Zurück zum Zitat R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.MATH R. Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press, New York, 2001.MATH
Metadaten
Titel
The Langevin Equation
verfasst von
Grigorios A. Pavliotis
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-1323-7_6