Skip to main content

2014 | OriginalPaper | Buchkapitel

2. The Lévy–Itô Decomposition and Path Structure

verfasst von : Andreas E. Kyprianou

Erschienen in: Fluctuations of Lévy Processes with Applications

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main aim of this chapter is to establish a rigorous understanding of the structure of the paths of Lévy processes. This will be done by establishing the so-called Lévy–Itô decomposition, which describes the structure of a general Lévy process in terms of three independent auxiliary Lévy processes, each with a different type of path behaviour. In doing so it will be necessary to digress temporarily into the theory of Poisson random measures and associated square-integrable martingales. Understanding the Lévy–Itô decomposition will allow us to distinguish a number of important, but nonetheless general, subclasses of Lévy processes according to their path type. The chapter is concluded with a discussion of the interpretation of the Lévy–Itô decomposition in the context of some of the applied probability models mentioned in Chap. 1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We understand a Poisson random variable whose parameter is infinite to be infinite valued with probability 1.
 
2
Specifically, \(\mathbb{P}\)-almost surely, N(∅)=0 and for disjoint A 1,A 2,… in \(\mathcal{B}[0,\infty)\times\mathcal{B}(\mathbb{R}\backslash\{0\} )\), we have
$$N \biggl(\bigcup_{i\geq1} A_i \biggr)= \sum_{i\geq1}N(A_i). $$
 
3
Recall that \(M'= \{M'_{t} : t\in [0, T]\}\) is a modification of M if, for every t≥0, we have \(P(M'_{t} =M_{t})=1\).
 
4
Recall that \(M'= \{M'_{t} : t\in[0, T]\}\) is a version of M if it is defined on the same probability space and \(\{\exists t\in[0,T] : M'_{t} \neq M_{t}\}\) is measurable with zero probability. Note that, if M′ is a modification of M, then it is not necessarily a version of M. However, it is obviously the case that, if M′ is a version of M, then it also fulfils the requirement of being a modification.
 
5
Recall that 〈⋅,⋅〉: L×L \(\rightarrow\mathbb{R}\) is an inner product on a vector space L over the reals if it satisfies the following properties, for f,gL and \(a,b\in \mathbb{R}\); (i) 〈af+bg,h〉=af,h〉+bg,h〉 for all hL, (ii) 〈f,g〉=〈g,f〉, (iii) 〈f,f〉≥0 and (iv) 〈f,f〉=0 if and only if f=0.
For each fL, let ∥f∥=〈f,f1/2. The pair (L,〈⋅,⋅〉) are said to form a Hilbert space if all sequences, {f n :n=1,2,…} in L that satisfy ∥f n f m ∥→0 as m,n→∞, i.e. so-called Cauchy sequences, have a limit in L.
 
6
Here, we use the fact that \(\{\mathcal{F}_{t} : t\in[0,T]\}\) satisfies the conditions of natural enlargement.
 
7
See for example the second volume of Lucretius (ca. 99 BC–ca. 55 BC) and the formalisation in Einstein (1905).
 
8
The notation ℑz refers to the imaginary part of z.
 
Literatur
Zurück zum Zitat Ash, R. and Doléans-Dade, C.A. (2000) Probability and Measure Theory. 2nd Edition. Harcourt, New York. MATH Ash, R. and Doléans-Dade, C.A. (2000) Probability and Measure Theory. 2nd Edition. Harcourt, New York. MATH
Zurück zum Zitat Bachelier, L. (1900) Théorie de la spéculation. Ann. Sci. Éc. Norm. Super. 17, 21–86. [Louis Bachelier’s Theory of Speculation. The origins of modern finance. Translated and with commentary by Mark Davis and Alison Etheridge. Foreword by Paul A. Samuelson. Princeton University Press, 2006.] MATHMathSciNet Bachelier, L. (1900) Théorie de la spéculation. Ann. Sci. Éc. Norm. Super. 17, 21–86. [Louis Bachelier’s Theory of Speculation. The origins of modern finance. Translated and with commentary by Mark Davis and Alison Etheridge. Foreword by Paul A. Samuelson. Princeton University Press, 2006.] MATHMathSciNet
Zurück zum Zitat Bachelier, L. (1901) Théorie mathematique du jeu. Ann. Sci. Éc. Norm. Super. 18, 143–210. MATHMathSciNet Bachelier, L. (1901) Théorie mathematique du jeu. Ann. Sci. Éc. Norm. Super. 18, 143–210. MATHMathSciNet
Zurück zum Zitat Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659. CrossRef Black, F. and Scholes, M. (1973) The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659. CrossRef
Zurück zum Zitat Boyarchenko, S.I. and Levendorskii, S.Z. (2002b) Non-Gaussian Merton–Black–Scholes Theory. World Scientific, Singapore. MATH Boyarchenko, S.I. and Levendorskii, S.Z. (2002b) Non-Gaussian Merton–Black–Scholes Theory. World Scientific, Singapore. MATH
Zurück zum Zitat Campbell, N.R. (1909) The study of discontinuous phenomena. Proc. Camb. Philos. Soc. 15, 117–136. Campbell, N.R. (1909) The study of discontinuous phenomena. Proc. Camb. Philos. Soc. 15, 117–136.
Zurück zum Zitat Campbell, N.R. (1910) Discontinuities in light emission. Proc. Camb. Philos. Soc. 15, 310–328. MATH Campbell, N.R. (1910) Discontinuities in light emission. Proc. Camb. Philos. Soc. 15, 310–328. MATH
Zurück zum Zitat Cont, R. and Tankov, P. (2004) Financial Modeling with Jump Processes. Chapman and Hall/CRC, Boca Raton. Cont, R. and Tankov, P. (2004) Financial Modeling with Jump Processes. Chapman and Hall/CRC, Boca Raton.
Zurück zum Zitat Einstein, A. (1905) On the motion of small particles suspended in a stationary Liquid, as required by the molecular kinetic theory of heat. Ann. Phys.. 322, 549–560. CrossRef Einstein, A. (1905) On the motion of small particles suspended in a stationary Liquid, as required by the molecular kinetic theory of heat. Ann. Phys.. 322, 549–560. CrossRef
Zurück zum Zitat Geman, H., Madan, D. and Yor, M. (2001) Asset prices are Brownian motion: only in business time. In, Quantitative Analysis in Financial Markets, 103–146. World Scientific, Singapore. CrossRef Geman, H., Madan, D. and Yor, M. (2001) Asset prices are Brownian motion: only in business time. In, Quantitative Analysis in Financial Markets, 103–146. World Scientific, Singapore. CrossRef
Zurück zum Zitat Itô, K. (1942) On stochastic processes. I. (Infinitely divisible laws of probability). Jpn. J. Math. 18, 261–301. MATH Itô, K. (1942) On stochastic processes. I. (Infinitely divisible laws of probability). Jpn. J. Math. 18, 261–301. MATH
Zurück zum Zitat Itô, K. (1970) Poisson point processes attached to Markov processes. In, Proc. 6th Berkeley Symp. Math. Stat. Probab. III, 225–239. Itô, K. (1970) Poisson point processes attached to Markov processes. In, Proc. 6th Berkeley Symp. Math. Stat. Probab. III, 225–239.
Zurück zum Zitat Kingman, J.F.C. (1993) Poisson Processes. Oxford University Press, Oxford. MATH Kingman, J.F.C. (1993) Poisson Processes. Oxford University Press, Oxford. MATH
Zurück zum Zitat Lévy, P. (1954) Théorie de l’Addition des Variables Aléatoires, 2nd Edition. Gaulthier-Villars, Paris. MATH Lévy, P. (1954) Théorie de l’Addition des Variables Aléatoires, 2nd Edition. Gaulthier-Villars, Paris. MATH
Zurück zum Zitat Lucretius, C.T. (ca. 99 BC–ca. 55 BC). De rerum natura. Lucretius, C.T. (ca. 99 BC–ca. 55 BC). De rerum natura.
Zurück zum Zitat Madan, D.P. and Seneta, E. (1990) The VG for share market returns J. Bus. 63, 511–524. Madan, D.P. and Seneta, E. (1990) The VG for share market returns J. Bus. 63, 511–524.
Zurück zum Zitat Moran, P.A. (1968) An Introduction to Probability Theory Oxford University Press, Oxford. MATH Moran, P.A. (1968) An Introduction to Probability Theory Oxford University Press, Oxford. MATH
Zurück zum Zitat Prabhu, N.U. (1998) Stochastic Storage Processes. Queues, Insurance Risk, Dams and Data Communication. 2nd Edition. Springer, Berlin. CrossRef Prabhu, N.U. (1998) Stochastic Storage Processes. Queues, Insurance Risk, Dams and Data Communication. 2nd Edition. Springer, Berlin. CrossRef
Zurück zum Zitat Samuelson, P. (1965) Rational theory of warrant pricing. Ind. Manage. Rev. 6, 13–32. Samuelson, P. (1965) Rational theory of warrant pricing. Ind. Manage. Rev. 6, 13–32.
Zurück zum Zitat Schoutens, W. (2003) Lévy Processes in Finance. Pricing Finance Derivatives. Wiley, New York. Schoutens, W. (2003) Lévy Processes in Finance. Pricing Finance Derivatives. Wiley, New York.
Zurück zum Zitat Takács, L. (1966) Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York. Takács, L. (1966) Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York.
Metadaten
Titel
The Lévy–Itô Decomposition and Path Structure
verfasst von
Andreas E. Kyprianou
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37632-0_2