Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2010

01.12.2010

The local and non-local components of the local field potential in awake primate visual cortex

verfasst von: Timothy J. Gawne

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abeles, M., & Goldstein, M. H., Jr. (1977). Multispike train analysis. Proceedings of the IEEE, 65, 762–773.CrossRef Abeles, M., & Goldstein, M. H., Jr. (1977). Multispike train analysis. Proceedings of the IEEE, 65, 762–773.CrossRef
Zurück zum Zitat Berens, A., Keliris, G. A., Ecker, A. S., Logothetis, N. K., & Tolias, A. S. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2, 1–11.CrossRef Berens, A., Keliris, G. A., Ecker, A. S., Logothetis, N. K., & Tolias, A. S. (2008). Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Frontiers in Systems Neuroscience, 2, 1–11.CrossRef
Zurück zum Zitat Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science, 283, 695–699.CrossRefPubMed Bringuier, V., Chavane, F., Glaeser, L., & Frégnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science, 283, 695–699.CrossRefPubMed
Zurück zum Zitat Doty, R. W. (1958). Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli. Journal of Neurophysiology, 21, 437–464.PubMed Doty, R. W. (1958). Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli. Journal of Neurophysiology, 21, 437–464.PubMed
Zurück zum Zitat Ebersole, J. S., & Kaplan, B. J. (1981). Intracortical evoked potentials of cats elicited by punctate visual stimuli in receptive field peripheries. Brain Research, 224, 1601–1664.CrossRef Ebersole, J. S., & Kaplan, B. J. (1981). Intracortical evoked potentials of cats elicited by punctate visual stimuli in receptive field peripheries. Brain Research, 224, 1601–1664.CrossRef
Zurück zum Zitat Engel, A. K., König, P., Gray, C. M., & Singer, W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2, 588–606.CrossRefPubMed Engel, A. K., König, P., Gray, C. M., & Singer, W. (1990). Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. European Journal of Neuroscience, 2, 588–606.CrossRefPubMed
Zurück zum Zitat Fahle, M., & Bach, M. (2006). Origin of the visual evoked potentials. In J. R. Heckenlively & G. B. Arden (Eds.), Principles and practice of clinical electrophysiology of vision (2nd ed.). Cambridge: MIT. Fahle, M., & Bach, M. (2006). Origin of the visual evoked potentials. In J. R. Heckenlively & G. B. Arden (Eds.), Principles and practice of clinical electrophysiology of vision (2nd ed.). Cambridge: MIT.
Zurück zum Zitat Gamlin, P. D. R., Zhang, H., Harlow, A., & Barbur, J. L. (1998). Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey. Vision Research, 38, 3353–3358.CrossRefPubMed Gamlin, P. D. R., Zhang, H., Harlow, A., & Barbur, J. L. (1998). Pupil responses to stimulus color, structure and light flux increments in the rhesus monkey. Vision Research, 38, 3353–3358.CrossRefPubMed
Zurück zum Zitat Gattass, R., Gross, C. G., & Sandell, J. H. (1981). Visual topography of V2 in the macaque. Journal of Comparative Neurology, 201, 519–539.CrossRefPubMed Gattass, R., Gross, C. G., & Sandell, J. H. (1981). Visual topography of V2 in the macaque. Journal of Comparative Neurology, 201, 519–539.CrossRefPubMed
Zurück zum Zitat Gawne, T. J., & Martin, J. M. (2002). Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. Journal of Neurophysiology, 88, 2178–2186.CrossRefPubMed Gawne, T. J., & Martin, J. M. (2002). Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. Journal of Neurophysiology, 88, 2178–2186.CrossRefPubMed
Zurück zum Zitat Kasamtsu, T., Mizobe, K., & Sutter, E. (2005). Muscimol and baclofen differentially suppress retinotopic and nonretinotopic responses in visual cortex. Visual Neuroscience, 22, 839–858. Kasamtsu, T., Mizobe, K., & Sutter, E. (2005). Muscimol and baclofen differentially suppress retinotopic and nonretinotopic responses in visual cortex. Visual Neuroscience, 22, 839–858.
Zurück zum Zitat Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.CrossRefPubMed Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61, 35–41.CrossRefPubMed
Zurück zum Zitat Kitano, M., Niiyama, K., Kasamatsu, T., Sutter, E. E., & Norcia, A. M. (1994). Retinotopic and nonretinotopic field potentials in cat visual cortex. Visual Neuroscience, 11, 953–977.CrossRefPubMed Kitano, M., Niiyama, K., Kasamatsu, T., Sutter, E. E., & Norcia, A. M. (1994). Retinotopic and nonretinotopic field potentials in cat visual cortex. Visual Neuroscience, 11, 953–977.CrossRefPubMed
Zurück zum Zitat Kitano, M., Kasamatsu, T., Norcia, A. M., & Sutter, E. E. (1995). Spatially distributed responses induced by contrast reversal in cat visual cortex. Experimental Brain Research, 104, 279–309.CrossRef Kitano, M., Kasamatsu, T., Norcia, A. M., & Sutter, E. E. (1995). Spatially distributed responses induced by contrast reversal in cat visual cortex. Experimental Brain Research, 104, 279–309.CrossRef
Zurück zum Zitat Kreiman, G., Hung, C. P., Kraskov, A., Quiroga, R. Q., Poggio, T., & DiCarlo, J. J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron, 49, 433–445.CrossRefPubMed Kreiman, G., Hung, C. P., Kraskov, A., Quiroga, R. Q., Poggio, T., & DiCarlo, J. J. (2006). Object selectivity of local field potentials and spikes in the macaque inferior temporal cortex. Neuron, 49, 433–445.CrossRefPubMed
Zurück zum Zitat Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Science, 93, 6112–6117.CrossRef Kruse, W., & Eckhorn, R. (1996). Inhibition of sustained gamma oscillations (35–80 Hz) by fast transient responses in cat visual cortex. Proceedings of the National Academy of Science, 93, 6112–6117.CrossRef
Zurück zum Zitat Leigh, R. J., & Zee, D. S. (2006). The neurology of eye movements (4th ed.). Oxford: Oxford University Press. Leigh, R. J., & Zee, D. S. (2006). The neurology of eye movements (4th ed.). Oxford: Oxford University Press.
Zurück zum Zitat Liu, J., & Newsome, W. T. (2006). Local field potential in cortical area MT. Stimulus tuning and behavioral considerations. Journal of Neuroscience, 26, 7779–7790.CrossRefPubMed Liu, J., & Newsome, W. T. (2006). Local field potential in cortical area MT. Stimulus tuning and behavioral considerations. Journal of Neuroscience, 26, 7779–7790.CrossRefPubMed
Zurück zum Zitat Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefPubMed Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.CrossRefPubMed
Zurück zum Zitat Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron, 55, 809–823.CrossRefPubMed Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron, 55, 809–823.CrossRefPubMed
Zurück zum Zitat Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.PubMed Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.PubMed
Zurück zum Zitat Nunez, P. L., Wingeier, B. M., & Silberstein, R. B. (2001). Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping, 13, 125–164.CrossRefPubMed Nunez, P. L., Wingeier, B. M., & Silberstein, R. B. (2001). Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping, 13, 125–164.CrossRefPubMed
Zurück zum Zitat Richmond, B. J., Hertz, J. A., & Gawne, T. J. (1999). The relation between V1 neuronal responses and eye movement-like stimulus presentations. Neurocomputing, 26–27, 247–254.CrossRef Richmond, B. J., Hertz, J. A., & Gawne, T. J. (1999). The relation between V1 neuronal responses and eye movement-like stimulus presentations. Neurocomputing, 26–27, 247–254.CrossRef
Zurück zum Zitat Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall. Silverman, B. W. (1986). Density estimation for statistics and data analysis. New York: Chapman and Hall.
Zurück zum Zitat Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–521.CrossRefPubMed Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–521.CrossRefPubMed
Zurück zum Zitat Weiner, M. C., Oram, M. W., Liu, Z., & Richmond, B. (2001). Consistency of encoding in monkey visual cortex. Journal of Neuroscience, 21, 8210–8221. Weiner, M. C., Oram, M. W., Liu, Z., & Richmond, B. (2001). Consistency of encoding in monkey visual cortex. Journal of Neuroscience, 21, 8210–8221.
Zurück zum Zitat Xing, D., Yeh, C. I., & Shapley, R. M. (2009). Spatial spread of the local field potential and it laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.CrossRefPubMed Xing, D., Yeh, C. I., & Shapley, R. M. (2009). Spatial spread of the local field potential and it laminar variation in visual cortex. Journal of Neuroscience, 29, 11540–11549.CrossRefPubMed
Metadaten
Titel
The local and non-local components of the local field potential in awake primate visual cortex
verfasst von
Timothy J. Gawne
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2010
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0223-x

Weitere Artikel der Ausgabe 3/2010

Journal of Computational Neuroscience 3/2010 Zur Ausgabe

Premium Partner