Skip to main content

2015 | OriginalPaper | Buchkapitel

The Material Basis of ICT

verfasst von : Patrick A. Wäger, Roland Hischier, Rolf Widmer

Erschienen in: ICT Innovations for Sustainability

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Technologies for storing, transmitting, and processing information have made astounding progress in dematerialization. The amount of physical mass needed to represent one bit of information has dramatically decreased in the last few years, and is still declining. However, information will always need a material basis. In this chapter, we address both the upstream (from mining to the product) and the downstream (from the product to final disposal) implications of the composition of an average Swiss end-of-life (EoL) consumer ICT device from a materials perspective. Regarding the upstream implications, we calculate the scores of the MIPS material rucksack indicator and the ReCiPe mineral resource depletion indicator for selected materials contained in ICT devices, namely polymers, the base metals Al, Cu, and Fe, and the geochemically scarce metals Ag, Au, and Pd. For primary production of one kg of raw material found in consumer ICT devices, the highest material rucksack and resource depletion scores are obtained for the three scarce metals Ag, Au, and Pd; almost the entire material rucksack for these metals is determined by the mining and refining processes. This picture changes when indicator scores are scaled to their relative mass per kg average Swiss EoL consumer ICT device: the base metals Fe and in particular Cu now score much higher than the scarce metals for both indicators. Regarding the downstream implications, we determine the effects of a substitution of primary raw materials in ICT devices with secondary raw materials recovered from EoL consumer ICT devices on both indicator scores. According to our results, such a substitution leads to benefits which are highest for the base metals, followed by scarce metals. The recovery of secondary raw materials from EoL consumer ICT devices can significantly reduce the need for primary raw materials and subsequently the material rucksacks and related impacts. However, increased recycling is not a panacea: the current rapid growth of the materials stock in the technosphere necessitates continuous natural resource depletion, and recycling itself is ultimately limited by thermodynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
ABS: acrylonitrile butadiene styrene; PC: polycarbonate; PC/ABS: polycarbonate/acrylonitrile butadiene styrene blend; PE: polyethylene; PS: polystyrene; SAN: styrene acrylonitrile.
 
2
A metal is called geochemically scarce if it occurs at an average concentration below 0.01 weight percent in the earth’s crust [4]. In this chapter, we use “scarce” as a synonym for “geochemically scarce.”
 
3
A deposit is any accumulation of a mineral or a group of minerals that may be economically valuable [12].
 
4
A reserve is the part of the resource which has been fully geologically evaluated and is commercially and legally mineable [12].
 
5
The reserve base is the reserve of a resource plus those parts of the resource that have a reasonable potential for becoming economically available within planning horizons beyond those that assume proven technology and current economics [12].
 
6
A resource is a natural concentration of minerals or a body of rock that is, or may become, of potential economic interest as a basis for the extraction of a mineral commodity [12].
 
7
The static lifetime is the ratio between reserve or reserve base and annual mine production [12].
 
8
The authors chose the acronym “ReCiPe” because the method is expected to provide a recipe for calculating life cycle impact category indicators and at the same time represent the initials of the institutes that were main contributors to this project [13].
 
9
The CML method is a problem-oriented impact assessment method developed at the Center of Environmental Science (CML) of Leiden University (NL) and described in their “operational guide to the ISO standards.” [14].
 
10
The Eco-Indicator ’99 method is an endpoint method that aggregates all impacts into three different damage categories (damage to human health, to ecosystem quality, and to the available resources). The method was developed in the Netherlands and is among the most often used life cycle impact assessment methods in Europe [15].
 
11
“Dissipation”—in this context—refers to the dilution of a material in the technosphere or ecosphere in such a way that its recovery is made practically impossible. The “technosphere” includes all objects and associated material flows that have been created by humankind and are under its control [9].
 
Literatur
1.
Zurück zum Zitat SWICO Recycling: Activity Report. In. Zürich, Switzerland (2011) SWICO Recycling: Activity Report. In. Zürich, Switzerland (2011)
2.
Zurück zum Zitat Haig, S., Morrish, L., Morton, R., Wilkinson, S.: Electrical product material composition. Waste and Resources Action Programme, Branbury, Oxon (2012) Haig, S., Morrish, L., Morton, R., Wilkinson, S.: Electrical product material composition. Waste and Resources Action Programme, Branbury, Oxon (2012)
3.
Zurück zum Zitat Müller, E., Widmer, R., Coroama, V., Orthlieb, P.: Material and energy flows and environmental impacts of the Internet in Switzerland. J. Ind. Ecol. 17(6), 814–826 (2013)CrossRef Müller, E., Widmer, R., Coroama, V., Orthlieb, P.: Material and energy flows and environmental impacts of the Internet in Switzerland. J. Ind. Ecol. 17(6), 814–826 (2013)CrossRef
4.
Zurück zum Zitat Skinner, B.: Earth resources. Proc. Natl. Acad. Sci. USA. 76(9), 4212–4217 (1979)CrossRef Skinner, B.: Earth resources. Proc. Natl. Acad. Sci. USA. 76(9), 4212–4217 (1979)CrossRef
5.
Zurück zum Zitat Johnson, J.: Dining at the periodic table: metals concentrations as they relate to recycling. Environ. Sci. Technol. 41(5), 1759–1765 (2007)CrossRef Johnson, J.: Dining at the periodic table: metals concentrations as they relate to recycling. Environ. Sci. Technol. 41(5), 1759–1765 (2007)CrossRef
6.
Zurück zum Zitat Stamp, A., Wäger, P.A., Hellweg, S.: Linking energy scenarios with metal demand modeling—the case of indium in CIGS solar cells. Submitted to Resources, Conservation & Recycling (2014) Stamp, A., Wäger, P.A., Hellweg, S.: Linking energy scenarios with metal demand modeling—the case of indium in CIGS solar cells. Submitted to Resources, Conservation & Recycling (2014)
7.
Zurück zum Zitat Hischier, R., Coroama V.C, D., S., Ahmadi Achachlouei, M.: Grey energy and environmental impacts of ICT hardware. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Springer, Germany (2014) (working Title) Hischier, R., Coroama V.C, D., S., Ahmadi Achachlouei, M.: Grey energy and environmental impacts of ICT hardware. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Springer, Germany (2014) (working Title)
8.
Zurück zum Zitat Saurat, M., Ritthoff, C.: Calculating MIPS 2.0. Resources 2, 581–607 (2013) Saurat, M., Ritthoff, C.: Calculating MIPS 2.0. Resources 2, 581–607 (2013)
9.
Zurück zum Zitat Wäger, P.A., Lang, D.J., Wittmer, D., Bleischwitz, R., Hagelüken, C.: Towards a more sustainable use of scarce metals. a review of intervention options along the metals life cycle. GAIA 21(4), 300–309 (2012) Wäger, P.A., Lang, D.J., Wittmer, D., Bleischwitz, R., Hagelüken, C.: Towards a more sustainable use of scarce metals. a review of intervention options along the metals life cycle. GAIA 21(4), 300–309 (2012)
10.
Zurück zum Zitat Erdmann, L., Graedel, T.E.: The criticality of non-fuel minerals: a review of major approaches and analyses. Environ. Sci. Technol. 45, 7620–7630 (2011). doi:10.1021/es200563g CrossRef Erdmann, L., Graedel, T.E.: The criticality of non-fuel minerals: a review of major approaches and analyses. Environ. Sci. Technol. 45, 7620–7630 (2011). doi:10.​1021/​es200563g CrossRef
11.
Zurück zum Zitat Graedel, T.E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N.T., Schechner, D., Warren, S., Yang, M.-Y., Zhu, C.: Methodology of Metal criticality determination. Environ. Sci. Technol. 46(2), 1063–1070 (2012). doi:10.1021/es203534z CrossRef Graedel, T.E., Barr, R., Chandler, C., Chase, T., Choi, J., Christoffersen, L., Friedlander, E., Henly, C., Jun, C., Nassar, N.T., Schechner, D., Warren, S., Yang, M.-Y., Zhu, C.: Methodology of Metal criticality determination. Environ. Sci. Technol. 46(2), 1063–1070 (2012). doi:10.​1021/​es203534z CrossRef
12.
Zurück zum Zitat EC: Critical Raw Materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials. In: European Commission (2010) EC: Critical Raw Materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials. In: European Commission (2010)
13.
Zurück zum Zitat Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., de Schreyver, A., Struijs, J., Van Zelm, R.: ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) / Report I: Characterisation. VROM—Ministry of Housing Spatial Planning and Environment, Den Haag (2012) Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., de Schreyver, A., Struijs, J., Van Zelm, R.: ReCiPe 2008—A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) / Report I: Characterisation. VROM—Ministry of Housing Spatial Planning and Environment, Den Haag (2012)
14.
Zurück zum Zitat Guinee, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J.: Life cycle assessment. An operational guide to the ISO standards. Part 3: scientific background. Ministry of Housing, Spatial Planning and Environment (VROM) and Centrum voor Milieukunde (CML), Rijksuniversiteit, Den Haag and Leiden (2001) Guinee, J., Gorrée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, H., van Duin, R., Huijbregts, M.A.J.: Life cycle assessment. An operational guide to the ISO standards. Part 3: scientific background. Ministry of Housing, Spatial Planning and Environment (VROM) and Centrum voor Milieukunde (CML), Rijksuniversiteit, Den Haag and Leiden (2001)
15.
Zurück zum Zitat Goedkoop, M., Spriensma, R.: Eco-indicator 99. A damage orientated method for Life Cycle Impact Assessment. Methodology Report. In., p. 132. PRé Consultants B.V., Amersfoort (2000) Goedkoop, M., Spriensma, R.: Eco-indicator 99. A damage orientated method for Life Cycle Impact Assessment. Methodology Report. In., p. 132. PRé Consultants B.V., Amersfoort (2000)
16.
Zurück zum Zitat Klinglmair, M., Serenella, S., Brandão, M.: Assessing resource depletion in LCA: a review of methods and methodological issues. Int. J. Life Cycle Assess. 18, 1036–1047 (2013)CrossRef Klinglmair, M., Serenella, S., Brandão, M.: Assessing resource depletion in LCA: a review of methods and methodological issues. Int. J. Life Cycle Assess. 18, 1036–1047 (2013)CrossRef
18.
Zurück zum Zitat Wäger, P.A., Schluep, M., Müller, E., Gloor, R.: RoHS regulated substances in mixed plastics from waste electrical and electronic equipment. Environ. Sci. Technol. 46(2), 628–635 (2012)CrossRef Wäger, P.A., Schluep, M., Müller, E., Gloor, R.: RoHS regulated substances in mixed plastics from waste electrical and electronic equipment. Environ. Sci. Technol. 46(2), 628–635 (2012)CrossRef
19.
Zurück zum Zitat Nakamura, S., Kondo, Y., Matsubae, K., Nakajima, K., Tasaki, T., Nagasaka, T.: Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality. Environ. Sci. Technol. 46, 9266–9273 (2012)CrossRef Nakamura, S., Kondo, Y., Matsubae, K., Nakajima, K., Tasaki, T., Nagasaka, T.: Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality. Environ. Sci. Technol. 46, 9266–9273 (2012)CrossRef
20.
Zurück zum Zitat Nakajima, K., Takeda, O., Miki, T., Matsubae, K., Nagasaka, T.: Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ. Sci. Technol. 45, 4929–4936 (2011) Nakajima, K., Takeda, O., Miki, T., Matsubae, K., Nagasaka, T.: Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ. Sci. Technol. 45, 4929–4936 (2011)
21.
Zurück zum Zitat SWICO Technical Inspectorate: Personal Communication Heinz Böni (2014) SWICO Technical Inspectorate: Personal Communication Heinz Böni (2014)
22.
Zurück zum Zitat Graedel, T.E.; Allwood, J., Birat; J.-P., Reck B.K.; Sibley, S.F.; Sonnemann, G.; Buchert, M.; Hagelüken, C.: UNEP: Recycling rates of metals—a status report. A report of the Working Group on the Global Flows to the International Resource Panel.(2011) Graedel, T.E.; Allwood, J., Birat; J.-P., Reck B.K.; Sibley, S.F.; Sonnemann, G.; Buchert, M.; Hagelüken, C.: UNEP: Recycling rates of metals—a status report. A report of the Working Group on the Global Flows to the International Resource Panel.(2011)
23.
Zurück zum Zitat Hagelüken, C., Meskers, C.E.M.: Complex life cycles of precious and special Metals. In: Graedel, T., van der Voet, E. (eds.) Linkages of Sustainability, vol. 4. Strüngmann Forum Report. The MIT Press, Cambridge, MA (2010) Hagelüken, C., Meskers, C.E.M.: Complex life cycles of precious and special Metals. In: Graedel, T., van der Voet, E. (eds.) Linkages of Sustainability, vol. 4. Strüngmann Forum Report. The MIT Press, Cambridge, MA (2010)
24.
Zurück zum Zitat Chancerel, P., Meskers, C.E.M., Hagelüken, C., Rotter, V.S.: Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J. Ind. Ecol. 13(5), 791–810 (2009)CrossRef Chancerel, P., Meskers, C.E.M., Hagelüken, C., Rotter, V.S.: Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J. Ind. Ecol. 13(5), 791–810 (2009)CrossRef
25.
Zurück zum Zitat Zimmermann, T., Gößling-Reisemann, S.: Critical materials and dissipative losses: a screening study. Sci. Total Environ. 461–462, 774–780 (2013)CrossRef Zimmermann, T., Gößling-Reisemann, S.: Critical materials and dissipative losses: a screening study. Sci. Total Environ. 461–462, 774–780 (2013)CrossRef
26.
Zurück zum Zitat Manhart, A.: International cooperation for metal recycling from waste electrical and electronic equipment: an assessment of the “best-of-two-worlds” approach. J. Ind. Ecol. 15(1), 13–30 (2011)CrossRef Manhart, A.: International cooperation for metal recycling from waste electrical and electronic equipment: an assessment of the “best-of-two-worlds” approach. J. Ind. Ecol. 15(1), 13–30 (2011)CrossRef
27.
Zurück zum Zitat Chancerel, P., Rotter, V.S., Ueberschaar, M., Marwede, M., Nissen, N.F., Lang, K.D.: Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste Manage. Res. 31(10 SUPPL.), 3–16 (2013)CrossRef Chancerel, P., Rotter, V.S., Ueberschaar, M., Marwede, M., Nissen, N.F., Lang, K.D.: Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste Manage. Res. 31(10 SUPPL.), 3–16 (2013)CrossRef
28.
Zurück zum Zitat Schluep, M., Müller, E., Hilty, L.M., Ott, D., Widmer, R., Böni, H.: Insights from a decade of development cooperation in e-waste management. In: Paper presented at the Proceedings of the First International Conference on Information and Communication Technologies for Sustainability ETH Zurich, 14-16 Feb 2013 Schluep, M., Müller, E., Hilty, L.M., Ott, D., Widmer, R., Böni, H.: Insights from a decade of development cooperation in e-waste management. In: Paper presented at the Proceedings of the First International Conference on Information and Communication Technologies for Sustainability ETH Zurich, 14-16 Feb 2013
29.
Zurück zum Zitat Wang, F., Huisman, J., Meskers, C.E.M., Schluep, M., Stevels, A.C.H.: The best-of-2-worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Manag. 32, 2134–2146 (2012) Wang, F., Huisman, J., Meskers, C.E.M., Schluep, M., Stevels, A.C.H.: The best-of-2-worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Manag. 32, 2134–2146 (2012)
30.
Zurück zum Zitat Böni, H., Schluep, M., Widmer, R.: Recycling of ICT equipment in industrialized and developing countries. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 223–241. Springer, Switzerland (2015) Böni, H., Schluep, M., Widmer, R.: Recycling of ICT equipment in industrialized and developing countries. In: Hilty, L.M., Aebischer, B. (eds.) ICT Innovations for Sustainability. Advances in Intelligent Systems and Computing, vol. 310, pp. 223–241. Springer, Switzerland (2015)
31.
Zurück zum Zitat Restrepo, E., Widmer, R., Wäger, P.A.: Improving recovery rates of scarce metals from waste electrical and electronic equipment (WEEE): an approach to optimize the pretreatment-recovery interface. Paper presented at the 3R International Scientific Conference on Material Cycles and Waste Management, Kyoto, 10–12 March, 2014. Restrepo, E., Widmer, R., Wäger, P.A.: Improving recovery rates of scarce metals from waste electrical and electronic equipment (WEEE): an approach to optimize the pretreatment-recovery interface. Paper presented at the 3R International Scientific Conference on Material Cycles and Waste Management, Kyoto, 10–12 March, 2014.
32.
Zurück zum Zitat Reuter, M.A., Hudson, C., van Schaik, A., Heiskanen, K., Meskers, C., Hagelüken, C.: UNEP: Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the International Resource Panel. (2013) Reuter, M.A., Hudson, C., van Schaik, A., Heiskanen, K., Meskers, C., Hagelüken, C.: UNEP: Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the International Resource Panel. (2013)
33.
Zurück zum Zitat Hilty, L.M.: Electronic Waste—an emerging risk?. Environ. Impact Assess. Rev. 25(5), 431–435 Hilty, L.M.: Electronic Waste—an emerging risk?. Environ. Impact Assess. Rev. 25(5), 431–435
34.
Zurück zum Zitat UN: Minamata Convention on Mercury. United Nations, Geneva (2013) UN: Minamata Convention on Mercury. United Nations, Geneva (2013)
Metadaten
Titel
The Material Basis of ICT
verfasst von
Patrick A. Wäger
Roland Hischier
Rolf Widmer
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-09228-7_12

Premium Partner