Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2016

Open Access 01.12.2016 | Research

The monotonicity and convexity of a function involving psi function with applications

verfasst von: Bang-Cheng Sun, Zhi-Ming Liu, Qiang Li, Shen-Zhou Zheng

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2016

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we prove that the function
$$ x\mapsto\exp \biggl( \psi \biggl( x+\frac{1}{2} \biggr) -\frac {1}{24} \frac{1}{x^{2}+7/40} \biggr) -x $$
is decreasing from \(( -1/2,\infty ) \) onto \(( 0,1/2 ) \) and convex on \(( -1/2,\infty ) \). As a consequence of the main theorem, various type of bounds for the psi function are presented, which essentially generalize or improve some known results.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

1 Introduction

For \(x>0\), the classical Euler gamma function Γ and psi (digamma) function ψ are defined by
$$ \Gamma ( x ) = \int_{0}^{\infty}t^{x-1}e^{-t}\,dt,\qquad \psi ( x ) =\frac{\Gamma^{\prime} ( x ) }{\Gamma (x ) }, $$
(1.1)
respectively. Furthermore, the derivatives \(\psi^{\prime}, \psi ^{\prime\prime}, \psi^{\prime\prime\prime}, \ldots\) are known as polygamma functions.
As an important role played in many branches, such as mathematical physics, probability, statistics, and engineering, the gamma and polygamma functions have attracted the attention of many scholars. Recently, many authors showed numerous interesting inequalities for the digamma (psi) function ψ and the Euler constant defined by
$$ \gamma=\lim_{n\rightarrow\infty} \Biggl( \sum_{k=1}^{n} \frac{1}{k}-\ln n \Biggr) =0.577215664\cdots, $$
where \(\sum_{k=1}^{n}\frac{1}{k}:=H_{n}\) is called the harmonic number. In particular, there has many approximation formulas for psi function and harmonic number, which can be found in [118], and closely related references therein.
We would like to mention DeTemple and Wang’s paper [19] for half-integer approximation formulas
$$ \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac{1}{24 ( n+1 ) ^{2}}< H_{n}< \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac{1}{24n^{2}} $$
(1.2)
and
$$ \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac{1}{24n^{2}}+ \frac{7}{960} \frac{1}{ ( n+1 ) ^{4}}< H_{n}< \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac{1}{24n^{2}}+\frac{7}{960} \frac{1}{n^{4}}. $$
(1.3)
It was also proved in [13, 20], [21], Lemma 1.7, that
$$ \ln \biggl( x+\frac{1}{2} \biggr) < \psi ( x+1 ) \leq\ln \bigl( x+e^{-\gamma} \bigr) $$
(1.4)
for \(x>0\), where \(\frac{1}{2}\) and \(e^{-\gamma}\) are the best possible constants, and \(\gamma=0.577215664\cdots\) is the Euler-Mascheroni constant. Thanks to formula (1.4) and the relation \(H_{n}=\gamma+\psi ( n+1 ) \), we have
$$ \gamma+\ln \biggl( n+\frac{1}{2} \biggr) < H_{n}\leq\gamma+\ln \bigl( n+e^{1-\gamma}-1 \bigr) $$
(1.5)
for any \(n\in\mathbb{N}\). In 2011, Batir [22] further proved that
$$ \frac{1}{2}\ln \bigl( x^{2}+x+e^{-2\gamma} \bigr) \leq\psi ( x+1 ) < \frac{1}{2}\ln \biggl( x^{2}+x+\frac{1}{3} \biggr) $$
(1.6)
for all \(x>0\), where \(e^{-2\gamma}\) and \(1/3\) are the best possible. As a direct consequence, he showed that, for \(n\in\mathbb{N}\),
$$ \gamma+\frac{1}{2}\ln \bigl( n^{2}+n+e^{2-2\gamma}-2 \bigr) \leq H_{n}< \gamma+\frac{1}{2}\ln \biggl( n^{2}+n+ \frac{1}{3} \biggr) . $$
(1.7)
Batir [23, 24] provided another interesting bound for the psi function:
$$ a-\ln \bigl( e^{1/x}-1 \bigr) < \psi ( x ) < b-\ln \bigl( e^{1/x}-1 \bigr) , $$
(1.8)
where \(x>0\), \(a\leq\ln2\), and \(b\geq0\). Consequently, the double inequality
$$ \ln\frac{\pi^{2}}{6}-\ln \bigl( e^{1/ ( n+1 ) }-1 \bigr) < H_{n}< \gamma-\ln \bigl( e^{1/ ( n+1 ) }-1 \bigr) $$
(1.9)
for all \(n\in\mathbb{N}\) was attained in Corollary 2.2 in [23]. Later, this inequality was sharpened to
$$ 1+\ln ( \sqrt{e}-1 ) -\ln \bigl( e^{1/ ( n+1 ) }-1 \bigr) < H_{n}< \gamma-\ln \bigl( e^{1/ ( n+1 ) }-1 \bigr) $$
(1.10)
for all \(n\in\mathbb{N}\) by Alzer [25].
For reader’s convenience, here we name this class of bounds for the psi function and harmonic numbers the Batir-type bounds and call the corresponding inequality a Batir-type inequality.
Also, inequalities (1.10) are equivalent to
$$ a\leq e^{H_{n+1}}-e^{H_{n}}< b $$
(1.11)
with the best constants \(a=e ( \sqrt{e}-1 ) \approx1.7634\) and \(b=e^{\gamma}\approx1.7810\) (see also [26]). For a more general result, see [3], Theorem 1.3. Similarly, in the context, we call inequalities (1.11) the Alzer-type ones.
Batir [22] further proved some new Batir-type inequalities for the psi functions and harmonic number, in particular,
$$ \frac{1}{2}\ln\frac{2x+b}{e^{2/ ( x+1 ) }-1}\leq\psi ( x+1 ) \leq\frac{1}{2}\ln \frac{2x+b}{e^{2/ ( x+1 ) }-1} \quad\mbox{for } x\geq0 $$
with the best constants \(a=2\) and \(b=e^{-2\gamma} ( e^{2}-1 ) \). This implies that, for \(n\in\mathbb{N}\), we have
$$ \frac{1}{2}\ln\frac{2n+b}{e^{2/ ( n+1 ) }-1}\leq H_{n}\leq \frac{1}{2}\ln\frac{2n+b}{e^{2/ ( n+1 ) }-1}, $$
where \(a=2\) and \(b=e^{2-2\gamma} ( e-1 ) -2\approx2.0024\) are the best possible. Obviously, it is equivalent to the double inequalities
$$ e^{2\gamma} ( 2n+2 ) < e^{2H_{n+1}}-e^{2H_{n}}\leq e^{2\gamma } ( 2n+2.0024\cdots) . $$
Clearly, it is an Alzer-type inequality.
On the other hand, Villarino [27], Theorem 1.7, proved that the sequence
$$ d_{n}=\frac{1}{\psi ( n+1 ) -\ln ( n+1/2 ) }-\frac {1}{24} \biggl( n+ \frac{1}{2} \biggr) ^{2} $$
is increasing for \(n\in\mathbb{N}\), and meanwhile DeTemple and Wang [19] by an approximation argument for the harmonic number showed, for \(n\in\mathbb{N}\), the following inequality:
$$ \frac{1}{24 ( n+1/2 ) ^{2}+21/5}< H_{n}-\ln \biggl( n+\frac {1}{2} \biggr) -\gamma< \frac{1}{24 ( n+1/2 ) ^{2}+1/ ( 1-\ln 3+\ln 2-\gamma ) -54} $$
with the best constants \(\frac{21}{5}\) and \(1/ ( 1-\ln3+\ln2+\psi ( 1 ) ) -54\approx3.7393\). Yang et al. [28], Theorem 2, further showed that the function
$$ x\mapsto F_{a} ( x ) =24 \bigl( x^{2}+a \bigr) \bigl[ \psi ( x+1/2 ) -\ln x \bigr] -1 $$
is strictly completely monotonic on \(( 0,\infty ) \) if and only if \(a\geq7/40\).
Motivated by all these recent papers, the aim of this paper is to investigate the monotonicity and convexity of the function related to the psi function and present some new general, Batir-type, and Alzer-type inequalities for the psi function and harmonic number.

2 Preliminaries

In this section, let us recall a few of involving lemmas and some basic facts.
Lemma 1
([29], pp.258-260)
Let \(x>0\) and \(n\in\mathbb{N}\). Then
$$ \psi^{ ( n ) }(x+1)-\psi^{ ( n ) }(x)=\frac{ ( -1 ) ^{n}n!}{x^{n+1}}. $$
(2.1)
Lemma 2
([29], pp.258-260)
As \(x\rightarrow\infty\), we have
$$\begin{aligned}& \psi ( x ) \thicksim\ln x-\frac{1}{2x}-\frac {1}{12x^{2}}+ \frac{1}{120x^{4}}-\frac{1}{252x^{6}}, \end{aligned}$$
(2.2)
$$\begin{aligned}& \psi^{\prime} ( x ) \thicksim\frac{1}{x}+\frac{1}{2x^{2}}+ \frac{1}{6x^{3}}-\frac{1}{30x^{5}}+\frac{1}{42x^{7}}, \end{aligned}$$
(2.3)
$$\begin{aligned}& \psi^{\prime\prime} ( x ) \thicksim-\frac{1}{x^{2}}-\frac {1}{x^{3}}- \frac{1}{2x^{4}}+\frac{1}{6x^{6}}-\frac{1}{6x^{8}}. \end{aligned}$$
(2.4)
Lemma 3
([30])
Let f be a function on an interval I such that \(\lim_{x\rightarrow\infty}f(x)=0\). If \(f(x+1)-f(x)>0\) for all \(x\in ( a,\infty ) \), then \(f(x)<0\). Conversely, if \(f(x+1)-f(x)<0\) for all \(x\in ( a,\infty ) \), then \(f(x)>0\).
Lemma 4
([31], Lemma 7)
For \(n\in\mathbb{N}\) and \(m\in\mathbb{N}\cup\{0\}\) with \(n>m\), let \(P_{n} ( t ) \) be a polynomial with n degrees defined by
$$ P_{n} ( t ) =\sum_{i=m+1}^{n}a_{i}t^{i}- \sum_{i=0}^{m}a_{i}t^{i}, $$
(2.5)
where \(a_{n},a_{m}>0\) and \(a_{i}\geq0\) for \(0\leq i\leq n-1\) with \(i\neq m\). Then there exists an unique number \(t_{m+1}\in ( 0,\infty ) \) satisfying \(P_{n} ( t ) =0\) such that \(P_{n} ( t ) <0\) for \(t\in ( 0,t_{m+1} ) \) and \(P_{n} ( t ) >0\) for \(t\in ( t_{m+1},\infty ) \).
Lemma 5
Let u be the function on \(( -\infty,\infty ) \) defined by
$$ u(x)=\frac{5}{120x^{2}+21}. $$
(2.6)
Then, for \(x\neq-1/2\), we have
$$ p ( x ) =-\frac{1}{(x+1/2)^{2}}-u^{\prime}(x+1)+u^{\prime}(x)< 0. $$
(2.7)
Proof
Differentiation leads to
$$ u^{\prime}(x)=-\frac{400}{3}\frac{x}{ ( 40x^{2}+7 ) ^{2}}. $$
(2.8)
Factoring gives
$$\begin{aligned} p ( x ) =&-\frac{1}{(x+1/2)^{2}}+\frac{400}{3}\frac{x+1}{ ( 40(x+1)^{2}+7 ) ^{2}}- \frac{400}{3}\frac{x}{ ( 40x^{2}+7 ) ^{2}}\\ =&-\frac{1}{(x+1/2)^{2}}-\frac{400}{3}\frac{4{,}800x^{4}+9{,}600x^{3}+6{,}960x^{2}+2{,}160x-49}{ ( 40(x+1)^{2}+7 ) ^{2} ( 40x^{2}+7 ) ^{2}}. \end{aligned}$$
Replacing x by \(( t-1/2 ) \) and factoring, we get
$$ p ( x ) =-\frac{7{,}680{,}000t^{8}-384{,}000t^{6}+2{,}851{,}200t^{4}-531{,}760t^{2}+250{,}563}{3t^{2} ( 40 ( t-1/2 ) ^{2}+7 ) ^{2} ( 40 ( t+1/2 ) ^{2}+7 ) ^{2}}, $$
where \(t=x+1/2\).
Note that the numerator of this fraction can be written as
$$\begin{aligned} p_{1} ( t ) =&7{,}680{,}000t^{8}-384{,}000t^{6}+2{,}851{,}200t^{4}-531{,}760t^{2}+250{,}563 \\ =&4{,}800t^{4} \bigl( 40t^{2}-1 \bigr) ^{2}+ \frac{7{,}692{,}800}{3}t^{4}+\frac {1}{3} \bigl( 920t^{2}-867 \bigr) ^{2}>0, \end{aligned}$$
(2.9)
and the desired result easily follows. □
Lemma 6
Let u and p be defined by (2.6) and (2.7). Suppose that q and r are defined on \(( -1/2,\infty ) \) by
$$\begin{aligned}& q ( x ) =\frac{2}{(x+1/2)^{3}}-u^{\prime\prime }(x+1)+u^{\prime \prime}(x),\\& r ( x ) =-\frac{1}{(x+1/2)^{2}}-u^{\prime}(x+1)-u^{\prime}(x). \end{aligned}$$
Then, for \(x>-1/2\), we have
$$ S ( x ) :=-\frac{2}{(x+1/2)^{2}}+r ( x+1 ) +\frac {q ( x+1 ) }{p ( x+1 ) }-r ( x ) - \frac{q ( x ) }{p ( x ) }< 0. $$
(2.10)
Proof
An immediate computation yields
$$ u^{\prime\prime}(x)=\frac{400}{3}\frac{120x^{2}-7}{ ( 40x^{2}+7 ) ^{3}}. $$
(2.11)
Then we get
$$\begin{aligned}& q ( x ) =\frac{2}{(x+1/2)^{3}}-\frac{400}{3}\frac {120(x+1)^{2}-7}{ ( 40(x+1)^{2}+7 ) ^{3}}+ \frac{400}{3}\frac{120x^{2}-7}{ ( 40x^{2}+7 ) ^{3}}, \end{aligned}$$
(2.12)
$$\begin{aligned}& r ( x ) =-\frac{1}{(x+1/2)^{2}}+\frac{400}{3}\frac{x+1}{ ( 40(x+1)^{2}+7 ) ^{2}}+ \frac{400}{3}\frac{x}{ ( 40x^{2}+7 ) ^{2}}. \end{aligned}$$
(2.13)
Substituting \(p ( x )\), \(q ( x )\), \(r ( x ) \) into \(S ( x ) \) and factoring it give
$$ S ( x ) =-\frac{16\times10^{11}}{3}\frac{S_{2} ( x ) }{S_{1} ( x ) }, $$
where
$$\begin{aligned} S_{1} ( x ) =& ( 2x+1 ) ^{2} ( 2x+3 ) ^{2} \bigl( 40x^{2}+7 \bigr) ^{2} \bigl( 40x^{2}+160x+167 \bigr) ^{2} \\ &{}\times \bigl(7{,}680{,}000x^{8}+92{,}160{,}000x^{7}+483{,}456{,}000x^{6}+1{,}448{,}064{,}000x^{5} \\ &{}+2{,}711{,}491{,}200x^{4} +3{,}257{,}107{,}200x^{3}+2{,}458{,}239{,}440x^{2} \\ &{} +1{,}069{,}159{,}920x+205{,}944{,}303 \bigr) \\ &{}\times \bigl(7{,}680{,}000x^{8}+30{,}720{,}000x^{7} +53{,}376{,}000x^{6}+52{,}608{,}000x^{5} \\ &{}+35{,}011{,}200x^{4} +18{,}182{,}400x^{3}+6{,}745{,}040x^{2} \\ &{}+1{,}301{,}840x+319{,}823\bigr),\\ S_{2} ( x ) =&19{,}544{,}408{,}064x^{20}+390{,}888{,}161{,}280x^{19}+\frac{18{,}277{,}115{,}756{,}544}{5}x^{18} \\ &{}+ \frac{106{,}181{,}831{,}688{,}192}{5}x^{17}+\frac{2{,}147{,}345{,}768{,}669{,}184}{25}x^{16} \\ &{}+\frac{6{,}422{,}868{,}775{,}010{,}304}{25}x^{15}+ \frac{368{,}287{,}175{,}087{,}671{,}296}{625}x^{14} \\ &{}+\frac{662{,}967{,}302{,}010{,}630{,}144}{625}x^{13}+\frac{4{,}756{,}138{,}453{,}310{,}742{,}528}{3{,}125}x^{12} \\ &{}+ \frac{5{,}496{,}272{,}101{,}145{,}296{,}896}{3{,}125}x^{11}+\frac{25{,}764{,}390{,}625{,}415{,}987{,}616}{15{,}625}x^{10} \\ &{}+\frac{3{,}939{,}903{,}200{,}496{,}190{,}272}{3{,}125}x^{9}+ \frac{12{,}333{,}289{,}847{,}706{,}921{,}772}{15{,}625}x^{8} \\ &{}+\frac{6{,}339{,}553{,}647{,}515{,}390{,}816}{15{,}625}x^{7}+\frac{26{,}760{,}964{,}338{,}980{,}254{,}467}{156{,}250}x^{6} \\ &{}+ \frac{4{,}616{,}788{,}558{,}072{,}176{,}841}{78{,}125}x^{5}+\frac{513{,}733{,}037{,}814{,}725{,}250{,}509}{31{,}250{,}000}x^{4} \\ &{}+\frac{27{,}954{,}545{,}230{,}825{,}852{,}509}{7{,}812{,}500}x^{3}+ \frac{44{,}860{,}757{,}315{,}321{,}422{,}071}{78{,}125{,}000}x^{2} \\ &{}+\frac{2{,}404{,}936{,}823{,}928{,}444{,}981}{39{,}062{,}500}x+\frac{389{,}355{,}305{,}888{,}516{,}211{,}027}{100{,}000{,}000{,}000}. \end{aligned}$$
(2.14)
We further prove that \(S_{1} ( x ) ,S_{2} ( x ) >0\) for \(x>-1/2\). In fact, replacing x by \(( t-1/2 ) \) in (2.14) and arranging, we obtain
$$\begin{aligned} S_{1} ( x ) =&16t^{2} ( t+1 ) ^{2} \bigl( 40t^{2}-40t+17 \bigr) ^{2} \bigl( 120t+40t^{2}+97 \bigr) ^{2}\\ &{}\times \bigl(7{,}680{,}000t^{8}+61{,}440{,}000t^{7}+214{,}656{,}000t^{6} +427{,}776{,}000t^{5}\\ &{}+534{,}691{,}200t^{4}+433{,}804{,}800t^{3}+225{,}855{,}440t^{2}+69{,}477{,}280t\\ &{}+9{,}866{,}003\bigr) \times p_{1} ( t ) , \end{aligned}$$
where \(p_{1} ( t ) \) is defined by (2.9), and \(t=x+1/2>0\). Clearly, \(S_{1} ( x ) >0\) for \(x>-1/2\).
Similarly, we have
$$ S_{2} ( x ) =S_{3} ( t ) +t^{2}S_{4} ( t ) , $$
where
$$\begin{aligned} S_{3} ( t ) =&19{,}544{,}408{,}064t^{20}+195{,}444{,}080{,}640t^{19}+\frac{4{,}351{,}725{,}010{,}944}{5}t^{18}\\ &{}+\frac{11{,}314{,}743{,}607{,}296}{5}t^{17}+\frac{94{,}415{,}373{,}656{,}064}{25}t^{16}+ \frac{104{,}269{,}760{,}888{,}832}{25}t^{15}\\ &{}+\frac{1{,}887{,}440{,}973{,}367{,}296}{625}t^{14}+\frac{888{,}059{,}638{,}659{,}072}{625}t^{13}\\ &{}+ \frac{1{,}921{,}294{,}271{,}712{,}768}{3{,}125}t^{12}+\frac{1{,}795{,}217{,}217{,}788{,}928}{3{,}125}t^{11}\\ &{}+\frac{8{,}617{,}726{,}188{,}296{,}736}{15{,}625}t^{10}+ \frac{928{,}558{,}757{,}330{,}976}{3{,}125}t^{9}\\ &{}+\frac{1{,}217{,}964{,}858{,}530{,}932}{15{,}625}t^{8}+\frac{353{,}703{,}953{,}859{,}088}{15{,}625}t^{7}\\ &{}+ \frac{3{,}731{,}661{,}240{,}517{,}347}{156{,}250}t^{6}+\frac{151{,}574{,}123{,}955{,}363{,}957}{156{,}250{,}000}t\\ &{}+\frac{20{,}166{,}045{,}810{,}484{,}915{,}467}{100{,}000{,}000{,}000},\\ S_{4} ( t ) =&\frac{1{,}496{,}705{,}911{,}425{,}721}{156{,}250}t^{3}-\frac{78{,}452{,}580{,}264{,}405{,}241}{31{,}250{,}000}t^{2}\\ &{}- \frac{25{,}060{,}239{,}724 662{,}741}{15{,}625{,}000}t+\frac{11{,}608{,}440{,}209{,}633{,}547}{9{,}765{,}625}. \end{aligned}$$
It is clear that \(S_{3} ( t ) >0\) for \(t=x+1/2>0\). To prove that \(S_{2} ( x ) >0\) for \(x>-1/2\), it suffices to prove that \(S_{4} ( t ) >0\) for \(t>0\). In fact, it is easy to check that
$$\begin{aligned} S_{4}^{\prime} ( t ) =&\frac{4{,}490{,}117{,}734{,}277{,}163}{156{,}250}t^{2}- \frac{78{,}452{,}580{,}264{,}405{,}241}{15{,}625{,}000}t\\ &{}-\frac{25{,}060{,}239{,}724{,}662{,}741}{15{,}625{,}000} \end{aligned}$$
has a positive zero point \(t_{0}\in ( 1/3,1/2 ) \) such that \(S_{4}^{\prime} ( t ) <0\) for \(t\in ( 0,t_{0} ) \) and \(S_{4}^{\prime} ( t ) <0\) for \(t\in ( t_{0},\infty ) \). Since \(S_{4} ( 0 ) ,S_{4} ( \infty ) >0\) and
$$\begin{aligned} S_{4} ( t_{0} ) =&\frac{1{,}496{,}705{,}911{,}425{,}721}{156{,}250}t_{0}^{3}+ \frac{11{,}608{,}440{,}209{,}633{,}547}{9{,}765{,}625} \\ &{}- \biggl( \frac{78{,}452{,}580{,}264{,}405{,}241}{31{,}250{,}000}t_{0}^{2}+ \frac{25{,}060{,}239{,}724{,}662{,}741}{15{,}625{,}000}t_{0} \biggr) \\ >&\frac{1{,}496{,}705{,}911{,}425{,}721}{156{,}250} \biggl( \frac{1}{3} \biggr) ^{3}+\frac{11{,}608{,}440{,}209{,}633{,}547}{9{,}765{,}625} \\ &{}- \biggl( \frac{78{,}452{,}580{,}264{,}405{,}241}{31{,}250{,}000} \biggl( \frac {1}{2} \biggr) ^{2}+\frac{25{,}060{,}239{,}724{,}662{,}741}{15{,}625{,}000}\frac {1}{2} \biggr)\\ =&\frac{1{,}922{,}580{,}540{,}937{,}065{,}541}{16{,}875{,}000{,}000}>0, \end{aligned}$$
so we get \(S_{4} ( t ) >0\) for \(t>0\), which proves that \(S_{2} ( x ) >0\) for \(x>-1/2\) and completes the proof. □

3 Monotonicity and convexity

In this section, we state and prove Theorems 1-3 on the monotonicity and convexity of three important functions \(f_{1}(x)\), \(f_{2}(x)\), and \(f_{3}(x)\) concerning the psi function, respectively.
Theorem 1
The function
$$ x\mapsto f_{1} ( x ) =\exp \biggl( \psi \biggl( x+\frac {1}{2} \biggr) -\frac{1}{24}\frac{1}{x^{2}+7/40} \biggr) -x $$
is decreasing from \(( -1/2,\infty ) \) onto \(( 0,1/2 ) \) and convex on \(( -1/2,\infty ) \).
Proof
With (2.6) in hand, \(f_{1} ( x ) \) can be written as
$$ f_{1} ( x ) =e^{\psi(x+1/2)-u(x)}-x. $$
Differentiation of this formula yields
$$\begin{aligned}& f_{1}^{\prime} ( x )= \bigl( \psi^{\prime }(x+1/2)-u^{\prime }(x) \bigr) e^{\psi(x+1/2)-u(x)}-1, \end{aligned}$$
(3.1)
$$\begin{aligned}& \begin{aligned}[b] f_{1}^{\prime\prime} ( x ) &=\frac{\psi^{\prime\prime }(x+1/2)-u^{\prime\prime}(x)+ ( \psi^{\prime}(x+1/2)-u^{\prime }(x) ) ^{2}}{e^{-\psi(x+1/2)+u(x)}} \\ &:=\frac{g ( x ) }{e^{-\psi(x+1/2)+u(x)}}. \end{aligned} \end{aligned}$$
(3.2)
By (2.1) this yields
$$\begin{aligned} & g ( x+1 ) -g ( x ) \\ &\quad= \bigl[ \psi(x+3/2,2)-u^{\prime \prime}(x+1) \bigr] + \bigl[ \psi(x+3/2,1)-u^{\prime}(x+1) \bigr] ^{2} \\ &\qquad{}- \bigl\{ \psi(x+1/2,2)-u^{\prime\prime}(x)+ \bigl[ \psi (x+1/2,1)-u^{\prime}(x) \bigr] ^{2} \bigr\} \\ &\quad= p ( x ) \biggl[ 2\psi(x+1/2,1)+r ( x ) +\frac {q ( x ) }{p ( x ) } \biggr] \\ &\quad:=p ( x ) h ( x ) , \end{aligned}$$
(3.3)
where \(p ( x )\), \(q ( x )\), \(r ( x ) \) are defined by (2.7), (2.12), (2.13), respectively.
Similarly, we get
$$ h ( x+1 ) -h ( x ) =-\frac{2}{(x+1/2)^{2}}+r ( x+1 ) +\frac{q ( x+1 ) }{p ( x+1 ) }-r ( x ) - \frac{q ( x ) }{p ( x ) }=S ( x ) . $$
By Lemma 6 we have \(h ( x+1 ) -h ( x ) <0\). It follows from \(\lim_{x\rightarrow\infty}h ( x ) =0\) and Lemma 3 that \(h ( x ) >\lim_{x\rightarrow\infty}h ( x ) =0\). Thanks to inequality (3.3), \(p ( x ) <0\), and Lemma 5, it follows that
$$ g ( x+1 ) -g ( x ) =p ( x ) h ( x ) < 0, $$
which implies by Lemma 3 that \(g ( x ) >\lim_{x\rightarrow \infty}g ( x ) =0\). Thus, in combination with (3.2), this leads to \(f_{1}^{\prime\prime} ( x ) >0\), that is, \(f_{1}\) is convex on \(( -1/2,\infty ) \), and \(f_{1}^{\prime}\) is increasing on \(( -1/2,\infty ) \). Utilizing the asymptotic formulas (2.2)-(2.3), this yields
$$ \lim_{x\rightarrow\infty}f_{1}^{\prime} ( x ) =\lim _{x\rightarrow\infty}f_{1} ( x ) =0. $$
Therefore, we get that \(f_{1}^{\prime} ( x ) <\lim_{x\rightarrow\infty }f_{1}^{\prime} ( x ) =0\), which implies that \(f_{1} ( x ) \) is decreasing on \(( -1/2,\infty ) \). Moreover, we conclude that
$$ 0=\lim_{x\rightarrow\infty}f_{1} ( x ) < f_{1} ( x ) < \lim_{x\rightarrow-1/2^{+}}f_{1} ( x ) =\frac{1}{2}, $$
which completes the proof. □
Theorem 2
The function
$$ x\mapsto f_{2} ( x ) =\exp\psi \biggl( x+\frac{1}{2} \biggr) -x \exp \biggl( \frac{1}{24}\frac{1}{x^{2}+7/40} \biggr) $$
is decreasing from \(( 0,\infty ) \) onto \(( 0,e^{-\gamma }/4 ) \) and convex on \(( 1/2,\infty ) \).
Proof
We have
$$\begin{aligned} f_{2} ( x ) =&\exp \biggl( \frac{1}{24}\frac {1}{x^{2}+7/40} \biggr) \biggl\{ \exp \biggl[ \psi \biggl( x+\frac{1}{2} \biggr) - \frac {1}{24}\frac{1}{x^{2}+7/40} \biggr] -x \biggr\} \\ =&\exp \biggl( \frac{1}{24}\frac{1}{x^{2}+7/40} \biggr) f_{1} ( x ) :=f_{0} ( x ) f_{1} ( x ) . \end{aligned}$$
Noting that
$$\begin{aligned}& f_{0}^{\prime} ( x ) =-\frac{1}{12}\frac{x}{ ( x^{2}+7/40 ) ^{2}} \exp \biggl( \frac{1}{24}\frac {1}{x^{2}+7/40} \biggr) \leq0\quad\mbox{for }x \geq0,\\& f_{0}^{\prime\prime} ( x ) =\frac{1}{57{,}600}\frac{14{,}400x^{4}+2{,}080x^{2}-147}{ ( x^{2}+7/40 ) ^{4}} \exp \biggl( \frac{1}{24}\frac{1}{x^{2}+7/40} \biggr) >0\quad\mbox{for }x\geq \frac{1}{2}, \end{aligned}$$
we have
$$\begin{aligned}& f_{2}^{\prime} ( x ) =f_{0}^{\prime} ( x ) f_{1} ( x ) +f_{0} ( x ) f_{1}^{\prime} ( x ) < 0\quad\mbox{for }x\geq0,\\& f_{2}^{\prime\prime} ( x ) =f_{0}^{\prime\prime} ( x ) f_{1} ( x ) +2f_{0}^{\prime} ( x ) f_{1}^{\prime } ( x ) +f_{0} ( x ) f_{1}^{\prime\prime} ( x ) >0\quad\mbox{for }x\geq\frac{1}{2}. \end{aligned}$$
A simple calculation leads to
$$ \lim_{x\rightarrow\infty}f_{2} ( x ) =\lim_{x\rightarrow \infty } \exp \biggl( \frac{1}{24}\frac{1}{x^{2}+7/40} \biggr) \lim _{x\rightarrow \infty}f_{1} ( x ) =0\quad\mbox{and}\quad \lim _{x\rightarrow 0+}f_{2} ( x ) =\frac{1}{4}e^{-\gamma}, $$
which completes the proof. □
Theorem 3
Let \(a\geq0\). Then the function
$$ x\mapsto f_{3} ( x ) =\psi \biggl( x+\frac{1}{2} \biggr) -\ln x- \frac{1}{24}\frac{1}{x^{2}+a} $$
is decreasing and convex on \(( 0,\infty ) \) if and only if \(a\geq 7/40\).
Proof
The necessity is obvious; it follows from the inequality \(\lim_{x\rightarrow\infty }x^{5}f_{3}^{\prime} ( x ) \leq0\). Indeed, using the asymptotic formulas (2.2), we have
$$ \lim_{x\rightarrow\infty}x^{5}f_{3}^{\prime} ( x ) =\frac {7}{240}-\frac{1}{6}a\leq0, $$
which yields \(a\geq7/40\).
We now are a position to prove the sufficiency. By differentiation we have
$$\begin{aligned}& f_{3}^{\prime} ( x ) =\psi^{\prime} \biggl( x+ \frac{1}{2} \biggr) -\frac{1}{x}+\frac{1}{12} \frac{x}{ ( x^{2}+a ) ^{2}}, \\& f_{3}^{\prime\prime} ( x ) =\psi^{\prime\prime} \biggl( x+ \frac{1}{2} \biggr) +\frac{1}{x^{2}}+\frac{1}{12} \frac{1}{ ( x^{2}+a ) ^{2}}-\frac{1}{3}\frac{x^{2}}{ ( x^{2}+a ) ^{3}}. \end{aligned}$$
Using (2.1), we have
$$\begin{aligned} f_{3}^{\prime\prime} ( x+1 ) -f_{3}^{\prime\prime} ( x ) =& \psi^{\prime\prime} \biggl( x+\frac{3}{2} \biggr) +\frac {1}{ ( x+1 ) ^{2}}+ \frac{1}{12}\frac{1}{ ( ( x+1 ) ^{2}+a ) ^{2}}-\frac{1}{3}\frac{x^{2}}{ ( ( x+1 ) ^{2}+a ) ^{3}} \\ &{}-\psi^{\prime\prime} \biggl( x+\frac{1}{2} \biggr) -\frac {1}{x^{2}}- \frac{1}{12}\frac{1}{ ( x^{2}+a ) ^{2}}+\frac{1}{3}\frac{x^{2}}{ ( x^{2}+a ) ^{3}} \\ =&\frac{2}{ ( x+1/2 ) ^{3}}+\frac{1}{ ( x+1 ) ^{2}}+\frac{1}{12} \frac{1}{ ( ( x+1 ) ^{2}+a ) ^{2}} \\ &{}-\frac{1}{3}\frac{x^{2}}{ ( ( x+1 ) ^{2}+a ) ^{3}}- \frac{1}{x^{2}}- \frac{1}{12}\frac{1}{ ( x^{2}+a ) ^{2}}+\frac {1}{3}\frac{x^{2}}{ ( x^{2}+a ) ^{3}} \\ =&-\frac{P ( x ) }{12x^{2} ( 2x+1 ) ^{3} ( x^{2}+a ) ^{3} ( x+1 ) ^{2} ( x^{2}+2x+a+1 ) ^{3}}, \end{aligned}$$
where
$$\begin{aligned} P ( x ) = {}& 12 ( 40a-7 ) x^{12}+72 ( 40a-7 ) x^{11}+ ( 1{,}536a^{2}+7{,}576a-1{,}290 ) x^{10}\\ &{}+ ( 7{,}680a^{2}+11{,}480a-1{,}830 ) x^{9}+ ( 2{,}016a^{3}+16{,}788a^{2}+11{,}038a-1{,}563 ) x^{8}\\ &{}+ ( 8{,}064a^{3}+21{,}072a^{2}+6{,}952a-816 ) x^{7}\\ &{}+ ( 1{,}440a^{4}+14{,}112a^{3}+16{,}710a^{2}+2{,}840a-252 ) x^{6}\\ &{}+ ( 4{,}320a^{4}+14{,}112a^{3}+8{,}634a^{2}+724a-42 ) x^{5}\\ &{}+ ( 576a^{5}+5{,}652a^{4}+8{,}862a^{3}+2{,}853a^{2}+115a-3 ) x^{4}\\ &{}+ ( 1{,}152a^{5}+4{,}104a^{4}+3{,}612a^{3}+540a^{2}+14a ) x^{3}\\ &{}+ ( 96a^{6}+936a^{5}+1{,}764a^{4}+966a^{3}+39a^{2}+a ) x^{2}\\ &{}+ ( 96a^{6}+360a^{5}+432a^{4}+168a^{3} ) x+ ( 12a^{6}+36a^{5}+36a^{4}+12a^{3} ) . \end{aligned}$$
It is easy to check that the coefficients of the polynomial \(P ( x ) \) are nonnegative for \(a\geq7/40\). Then we have \(f_{3}^{\prime \prime} ( x+1 ) -f_{3}^{\prime\prime} ( x ) <0\) for \(x>0 \). By Lemma 3 we get that \(f_{3}^{\prime\prime} ( x ) >\lim_{x\rightarrow\infty}f_{3}^{\prime\prime} ( x ) =0 \), which implies that \(f_{3}^{\prime} ( x ) \) is increasing on \(( 0,\infty ) \). Therefore, \(f_{3}^{\prime} ( x ) <\lim_{x\rightarrow\infty}f_{3}^{\prime} ( x ) =0\), which completes our proof. □

4 Inequalities for the psi function and harmonic number

Denote \(F_{i} ( x ) =f_{i} ( x+1/2 ) \) (\(i=1,2,3\)) in Theorems 1 and 2. Then, since \(F_{1}\) is decreasing, \(F_{1} ( 0 ) =e^{-\gamma-5/51}\), and \(\lim_{x\rightarrow \infty}F ( x ) =1/2\), we get the following conclusion.
Corollary 1
(i)
For \(x>-1/2\), we have
$$ \psi(x+1)>\ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24} \frac{1}{x^{2}+x+17/40}. $$
 
(ii)
For \(x\geq0\), we have
$$ \ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24}\frac {1}{x^{2}+x+17/40}< \psi (x+1)< \ln ( x+\alpha_{0} ) +\frac{1}{24} \frac{1}{x^{2}+x+17/40}, $$
(4.1)
where the constants \(1/2\) and \(\alpha_{0}=e^{-\gamma-5/51}\approx0.50903\) are the best possible.
 
Remark 1
Comparing (4.1) with (1.4), we find that, for \(x>0\),
$$\begin{aligned} \ln \biggl( x+\frac{1}{2} \biggr) < &\ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24}\frac{1}{x^{2}+x+17/40}< \psi(x+1) \\ < &\ln ( x+\alpha_{0} ) +\frac{1}{24}\frac {1}{x^{2}+x+17/40}< \ln \bigl( x+e^{-\gamma} \bigr). \end{aligned}$$
In fact, it suffices to show that the last inequality is valid for \(x>0 \). Let
$$ D_{1} ( x ) =\ln ( x+\alpha_{0} ) +\frac {1}{24} \frac{1}{x^{2}+x+17/40}< \ln \bigl( x+e^{-\gamma} \bigr) . $$
By differentiation we have
$$\begin{aligned} D_{1}^{\prime} ( x ) =&\frac{1}{x+\alpha_{0}}-\frac {1}{24} \frac{2x+1}{ ( x^{2}+x+17/40 ) ^{2}}-\frac{1}{x+\beta} \\ =&\frac{D_{2} ( x ) }{3 ( x+\alpha_{0} ) ( x+\beta ) ( 40x^{2}+40x+17 ) ^{2}}, \end{aligned}$$
where
$$\begin{aligned} D_{2} ( x ) ={}&4{,}800 ( e^{-\gamma}-\alpha_{0} ) x^{4}+400 ( 24e^{-\gamma}-24\alpha_{0}-1 ) x^{3}-40 ( 232\alpha_{0}-212e^{-\gamma}+5 ) x^{2} \\ &{}-40 ( 107\alpha_{0}-97e^{-\gamma}+10\alpha_{0}e^{-\gamma} ) x- ( 867\alpha_{0}-867e^{-\gamma}+200\alpha_{0}e^{-\gamma} )\\ :={}&a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}. \end{aligned}$$
It is easy to check that \(a_{4},a_{3}>0\) and \(a_{2},a_{1},a_{0}<0\). Then by Lemma 4 we see that there is \(x_{0}>0\) such that \(D_{2} ( x ) <0\) for \(x\in ( 0,x_{0} ) \) and \(D_{2} ( x ) >0\) for \(x\in ( x_{0},\infty ) \). This indicates that \(D_{1}\) is decreasing on \(( 0,x_{0} ) \) and increasing on \(( x_{0},\infty ) \). Therefore, we conclude that, for \(x>0\),
$$ D_{1} ( x ) < \max \bigl( D_{1} ( 0 ) ,D_{1} ( \infty ) \bigr) =0. $$
Remark 2
Similarly, we get the following inequalities:
$$\begin{aligned} \frac{1}{2}\ln \bigl( x^{2}+x+e^{-2\gamma} \bigr) < &\ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24}\frac{1}{x^{2}+x+17/40}< \psi(x+1)\\ < &\frac{1}{2}\ln \biggl( x^{2}+x+\frac{1}{3} \biggr) < \ln ( x+\alpha _{0} ) +\frac{1}{24}\frac{1}{x^{2}+x+17/40} \end{aligned}$$
for \(x>0\). A direct computation shows that
$$\begin{aligned}& \lim_{x\rightarrow\infty}\frac{\psi(x+1)-\frac{1}{2}\ln ( x^{2}+x+\frac{1}{3} ) }{x^{-4}} =-\frac{1}{180}, \end{aligned}$$
(4.2)
$$\begin{aligned}& \lim_{x\rightarrow\infty}\frac{\psi(x+1)-\ln ( x+\frac{1}{2} ) -\frac{1}{24}\frac{1}{x^{2}+x+17/40}}{x^{-6}} =\frac{2{,}071}{806{,}400}, \end{aligned}$$
(4.3)
which implies that the approximation formula of the psi function given in (4.1) is superior to (1.6).
Since \(F_{1} ( 1 ) =e^{286/291-\gamma}\), by the relation \(\psi(n+1)=H_{n}-\gamma\) we deduce the following:
Corollary 2
For \(n\in\mathbb{N}\), we have
$$ \gamma+\frac{1}{24}\frac{1}{n^{2}+n+17/40}+\ln ( n+1/2 ) < H_{n}< \gamma+\frac{1}{24}\frac{1}{n^{2}+n+17/40}+\ln ( n+\alpha _{1} ) , $$
where \(1/2\) and \(\alpha_{1}=e^{286/291-\gamma}\approx0.50021\) are the best possible.
Since \(F_{2}\) is decreasing on \(( -1/2,\infty ) \), \(\lim_{x\rightarrow\infty}F_{2} ( x ) =0\), and
$$ F_{2} ( 0 ) =e^{-\gamma}-\frac{1}{2}e^{5/51}=\frac{1}{2}\beta _{0}, \qquad F_{2} ( 1 ) =e^{1-\gamma}-\frac {3}{2}e^{5/291}=\frac{1}{2}\beta_{1},$$
we get the following:
Corollary 3
For \(x\geq0\), we have
$$\begin{aligned} \ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24}\frac{1}{x^{2}+x+17/40} < &\psi ( x+1 ) < \ln \biggl( x+\frac{1}{2} \biggr) +\frac {1}{24}\frac{1}{x^{2}+x+17/40}\\ &{}+\ln \biggl[ 1+\frac{\beta_{0}}{2x+1}\exp \biggl( -\frac{1}{24} \frac {1}{x^{2}+x+17/40} \biggr) \biggr] , \end{aligned}$$
where \(\beta_{0}=2e^{-\gamma}-e^{5/51}\approx0.019913\) is the best constant.
Corollary 4
For \(n\in\mathbb{N}\), we have
$$\begin{aligned} \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac{1}{24} \frac{1}{n^{2}+n+17/40} < &H_{n}< \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac {1}{24}\frac{1}{n^{2}+n+17/40} \\ &{}+\ln \biggl[ 1+\frac{\beta_{1}}{2n+1}\exp \biggl( -\frac{1}{24} \frac {1}{n^{2}+n+17/40} \biggr) \biggr] , \end{aligned}$$
where \(\beta_{1}=2e^{1-\gamma}-3e^{5/291}\approx0.00041845\) is the best constant.
For \(a=7/40\), since \(F_{3}\) is decreasing on \(( -1/2,\infty ) \), \(\lim_{x\rightarrow\infty}F_{3} ( x ) =0\), and
$$ F_{3} ( 0 ) =\ln2-\frac{5}{51}-\gamma=\delta_{0},\qquad F_{3} ( 1 ) =\frac{286}{291}-\ln\frac{3}{2}-\gamma=\delta _{1}, $$
we deduce the following:
Corollary 5
For \(x\geq0\), we have
$$ \ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24} \frac{1}{x^{2}+x+17/40}+\delta_{0}^{\ast}< \psi ( x+1 ) < \ln \biggl( x+\frac{1}{2} \biggr) +\frac{1}{24} \frac{1}{x^{2}+x+17/40}+\delta_{0}, $$
where \(\delta_{0}^{\ast}=0\) and \(\delta_{0}=\ln2-5/51-\gamma\approx 0.017892\) are the best constants.
Corollary 6
For \(n\in\mathbb{N}\), we have
$$ \gamma+\ln \biggl( n+\frac{1}{2} \biggr) +\frac{1}{24} \frac{1}{n^{2}+n+17/40}+\delta_{1}^{\ast}< H_{n}< \gamma+ \ln \biggl( n+\frac {1}{2} \biggr) +\frac{1}{24} \frac{1}{n^{2}+n+17/40}+\delta_{1}, $$
where \(\delta_{1}^{\ast}=0\) and \(\delta_{1}=286/291-\ln ( 3/2 ) -\gamma\approx0.00013710\) are the best constants.
From Theorem 1 we can obtain the following Batir-type inequalities for the psi function and harmonic number.
Corollary 7
For \(x\geq0\), we have
$$ \frac{1}{24 ( x^{2}+x+17/40 ) }-\ln \bigl( e^{Q ( x ) }-1 \bigr) +c_{0}< \psi ( x+1 ) < \frac{1}{24 ( x^{2}+x+17/40 ) }-\ln \bigl( e^{Q ( x ) }-1 \bigr) +c_{0}^{\ast} $$
with the best constants \(c_{0}=\ln ( e^{5{,}347/4{,}947}-1 ) -5/51-\gamma\approx-0.0088601\) and \(c_{0}^{\ast}=0\), where
$$ Q ( x ) =\frac{4{,}800x^{4}+19{,}200x^{3}+28{,}480x^{2}+18 560x+5{,}347}{3 ( x+1 ) ( 40x^{2}+40x+17 ) ( 40x^{2}+120x+97 ) }. $$
Proof
Let \(G_{1} ( x ) =F_{1} ( x+1 ) -F_{1} ( x ) =f_{1} ( x+3/2 ) -f_{1} ( x+1/2 ) \). Since \(f_{1}\) is convex on \(( -1/2,\infty ) \), we have
$$ G_{1}^{\prime} ( x ) =f_{1}^{\prime} ( x+3/2 ) -f_{1}^{\prime} ( x+1/2 ) =f_{1}^{\prime\prime} ( x+1/2+\theta ) >0, $$
which means that \(G_{1}\) is increasing on \(( 0,\infty ) \). Considering
$$\begin{aligned}& \begin{aligned}[b] G_{1} ( x ) ={}&\exp \biggl( \psi ( x+2 ) -\frac {1}{24}\frac{1}{ ( x+3/2 ) ^{2}+7/40} \biggr) \\ &{}-\exp \biggl( \psi ( x+1 ) -\frac{1}{24} \frac{1}{ ( x+1/2 ) ^{2}+7/40} \biggr) -1 \\ ={}&\exp \biggl( \psi ( x+1 ) -\frac{1}{24}\frac{1}{ ( x+1/2 ) ^{2}+7/40} \biggr) \bigl( e^{Q ( x ) }-1 \bigr) -1, \end{aligned}\\& G_{1} ( 0 ) =\exp \biggl( \frac{286}{291}-\gamma \biggr) -e \biggl( -\frac{5}{51}-\gamma \biggr) -1\quad\mbox{and}\quad\lim _{x\rightarrow\infty }G_{1} ( x ) =0, \end{aligned}$$
we have
$$ G_{1} ( 0 ) < \exp \biggl( \psi ( x+1 ) -\frac{1}{24}\frac{1}{ ( x+1/2 ) ^{2}+7/40} \biggr) \bigl( e^{Q ( x ) }-1 \bigr) -1< 0, $$
which attains the desired inequality. □
The increasing property of \(G_{1}\) and
$$ G_{1} ( 1 ) =\exp \biggl( \frac{2{,}303}{1{,}542}-\gamma \biggr) -\exp \biggl( \frac{286}{291}-\gamma \biggr) -1 $$
yield a sharp bound of harmonic number.
Corollary 8
For \(n\in\mathbb{N}\), we have
$$\begin{aligned} &\gamma+\frac{1}{24 ( n^{2}+n+17/40 ) }-\ln \bigl( e^{Q ( n ) }-1 \bigr) +c_{1}\\ &\quad< H_{n}< \gamma+\frac{1}{24 ( n^{2}+n+17/40 ) }-\ln \bigl( e^{Q ( n ) }-1 \bigr) +c_{1}^{\ast}, \end{aligned}$$
where \(c_{1}=286/291-\gamma+\ln ( e^{76{,}387/149{,}574}-1 ) \approx-0.00018438\) and \(c_{1}^{\ast}=0\) are the best constants.
Remark 3
Note that since \(\psi ( n+1 ) =H_{n}-\gamma\), \(G_{1} ( n ) \) is written as
$$\begin{aligned} G_{1} ( n ) ={}&\exp \biggl( H_{n+1}-\gamma-\frac{1}{24} \frac {1}{ ( n+3/2 ) ^{2}+7/40} \biggr) \\ &{}-\exp \biggl( H_{n}-\gamma- \frac {1}{24}\frac{1}{ ( n+1/2 ) ^{2}+7/40} \biggr) -1. \end{aligned}$$
Then by \(G_{1} ( 1 ) \leq G_{1} ( n ) < G_{1} ( \infty ) \) we have the following Alzer-type inequalities:
$$ 1.7807\approx\exp \biggl( \frac{2{,}303}{1{,}542} \biggr) -\exp \biggl( \frac {286}{291} \biggr) < e^{H_{n+1}-u_{n+1}}-e^{H_{n}-u_{n}}< e^{\gamma} \approx1.7811, $$
where
$$ u_{n}=\frac{1}{24}\frac{1}{ ( n+1/2 ) ^{2}+7/40}. $$
(4.4)
Remark 4
Similarly, it is easy to check that
$$ G_{2} ( x ) =F_{2} ( x+1 ) -F_{2} ( x ) =f_{2} ( x+3/2 ) -f_{2} ( x+1/2 ) $$
is increasing on \(( 0,\infty ) \). Then, from
$$ -0.00018779\approx\frac{3}{2}e^{5/291}-\frac{5}{2}e^{5/771}+e^{1-\gamma } \bigl( e^{1/2}-1 \bigr) =G_{2} ( 1 ) \leq G_{2} ( n ) < G_{2} ( \infty ) =0 $$
we derive other Alzer-type inequalities:
$$ \biggl( n+\frac{3}{2} \biggr) u_{n+1}- \biggl( n+ \frac{1}{2} \biggr) u_{n}+d_{1}< e^{H_{n+1}}-e^{H_{n}}< \biggl( n+\frac{3}{2} \biggr) u_{n+1}- \biggl( n+ \frac{1}{2} \biggr) u_{n}+d_{0}, $$
where \(d_{0}=0\) and \(d_{1}=3e^{5/291}/2-5e^{5/771}/2+e^{1-\gamma} ( e^{1/2}-1 ) \approx-0.00018779\) are the best constants with \(u_{n}\) as in (4.4).
Using the increasing property of \(F_{1}^{\prime}\), and noting that \(F_{1}^{\prime} ( -1^{+} ) =-1\), \(F_{1}^{\prime} ( 0 ) = ( \pi^{2}/6+200/867 ) e^{-\gamma-5/51}-1\), and \(F_{1} ( \infty ) =0\), we get
$$ \biggl( \frac{1}{6}\pi^{2}+\frac{200}{867} \biggr) e^{-\gamma -5/51}-1< \bigl( \psi^{\prime}(x+1)-u^{\prime}(x) \bigr) e^{\psi(x+1)-u(x)}-1< 0, $$
which implies the following:
Corollary 9
(i)
For \(x>-1\), we have
$$ \psi^{\prime}(x+1)< -\frac{1}{12}\frac{x+1/2}{ ( x^{2}+x+17/40 ) ^{2}}+\exp \biggl( - \psi(x+1)+\frac{1}{24 ( x^{2}+x+17/40 ) } \biggr) . $$
 
(ii)
For \(x\geq0\), we have the double inequalities
$$\begin{aligned} &{-}\frac{1}{12}\frac{x+1/2}{ ( x^{2}+x+17/40 ) ^{2}}+\lambda _{1}\exp \biggl( - \psi(x+1)+\frac{1}{24 ( x^{2}+x+17/40 ) } \biggr)\\ &\quad< \psi^{\prime}(x+1)< -\frac{1}{12}\frac{x+1/2}{ ( x^{2}+x+17/40 ) ^{2}}\\ &\qquad{}+ \lambda_{2}\exp \biggl( -\psi(x+1)+\frac {1}{24 ( x^{2}+x+17/40 ) } \biggr) , \end{aligned}$$
where \(\lambda_{1}= ( \pi^{2}/6+200/867 ) e^{-\gamma -5/51}\approx0.95474\) and \(\lambda_{2}=1\) are the best constants.
 
Remark 5
Elezovic et al. [32] proved the inequality
$$ \psi^{\prime} ( x ) < e^{-\psi ( x ) } $$
(4.5)
for \(x>0\). It has been improved by Batir [22] as
$$ \bigl( x+a^{\ast} \bigr) e^{-2\psi ( x ) }< \psi^{\prime } ( x+1 ) < \bigl( x+b^{\ast} \bigr) e^{-2\psi ( x ) } $$
for \(x>0\) with the best constants \(a^{\ast}=1/2\) and \(b^{\ast}=\pi ^{2}e^{-2\gamma}/6\). The last corollary gives another improvement of (4.5).
From the proof of Theorem 1 we see that \(g ( x ) >0\) for \(x>-1/2\), which can be written as the following corollary.
Corollary 10
For \(x>0\), we have
$$ \psi^{\prime\prime}(x)-u^{\prime\prime}(x-1/2)+ \bigl( \psi^{\prime }(x)-u^{\prime}(x-1/2) \bigr) ^{2}>0, $$
(4.6)
where \(u ( x ) \) is defined by (2.6).
Remark 6
Batir [23] showed that, for \(x>0\),
$$ \psi^{\prime}(x)^{2}+\psi^{\prime\prime}(x)>0. $$
(4.7)
Therefore, inequality (4.6) can be written as
$$ \psi^{\prime\prime}(x)+\psi^{\prime}(x)^{2}>\Delta ( x ) , $$
where
$$\begin{aligned} \Delta ( x ) ={}&{-}\frac{400}{3}\frac{2x-1}{ ( 40x^{2}-40x+17 ) ^{2}} \\ &{}\times\biggl( \psi^{\prime}(x)-\frac{14{,}400x^{4}-28{,}800x^{3}+22{,}880x^{2}-8{,}480x+1{,}073}{3 ( 2x-1 ) ( 40x^{2}-40x+17 ) ^{2}} \biggr) . \end{aligned}$$
Indeed, this result is optimal due to
$$\begin{aligned} &\psi^{\prime\prime}(x)-\frac{400}{3}\frac{120 ( x-1/2 ) ^{2}-7}{ ( 40 ( x-1/2 ) ^{2}+7 ) ^{3}}+ \biggl( \psi^{\prime }(x)+\frac{400}{3}\frac{ ( x-1/2 ) }{ ( 40 ( x-1/2 ) ^{2}+7 ) ^{2}} \biggr) ^{2} \\ &\quad=\psi^{\prime\prime}(x)+\psi^{\prime}(x)^{2}-\frac{400}{3} \frac {1}{ ( 40x^{2}-40x+17 ) ^{2}}\Delta ( x ) , \end{aligned}$$
where
$$ \Delta ( x ) =- ( 2x-1 ) \psi^{\prime}(x)+\frac{14{,}400x^{4}-28{,}800x^{3}+22{,}880x^{2}-8{,}480x+1{,}073}{3 ( 40x^{2}-40x+17 ) ^{2}}. $$
A numeric computation shows that \(\Delta ( x ) >0\) for \(0< x<2/5\) and \(x>3/2\), and so inequality (4.6) is better than (4.7).
From the inequalities \(f_{3}^{\prime} ( x ) <0\) and \(f_{3}^{\prime \prime} ( x ) >0\) on \(( 0,\infty ) \) for \(a=7/40\), which are given in the proof of Theorem 3, we have the following:
Corollary 11
For \(x>0\), we have the following inequalities:
$$\begin{aligned}& \psi^{\prime} \biggl( x+\frac{1}{2} \biggr) < \frac{1}{3} \frac{4{,}800x^{4}+1{,}280x^{2}+147}{x ( 40x^{2}+7 ) ^{2}},\\& \psi^{\prime\prime} \biggl( x+\frac{1}{2} \biggr) >-\frac{1}{3} \frac{ 192{,}000x^{6}+52{,}800x^{4}+20{,}440x^{2}+1{,}029}{x^{2} ( 40x^{2}+7 ) ^{3}},\\& \psi^{\prime\prime\prime} \biggl( x+\frac{1}{2} \biggr) < 2\frac{2{,}560{,}000x^{8}+512{,}000x^{6}+694{,}400x^{4}+54{,}880x^{2}+2{,}401}{x^{3} ( 40x^{2}+7 ) ^{4}}. \end{aligned}$$

Acknowledgements

This paper was supported by the Natural Science Foundation of China under Grant 11371050. The authors would like to thank the referees for their valuable comments and suggestions which essentially improved the quality of this paper.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Chen, CP: Monotonicity properties of functions related to the psi function. Appl. Math. Comput. 217, 2905-2911 (2010) MathSciNetMATH Chen, CP: Monotonicity properties of functions related to the psi function. Appl. Math. Comput. 217, 2905-2911 (2010) MathSciNetMATH
2.
Zurück zum Zitat Chu, YM, Zhang, XM, Tang, XM: An elementary inequality for psi function. Bull. Inst. Math. Acad. Sin. 3(3), 373-380 (2008) MathSciNetMATH Chu, YM, Zhang, XM, Tang, XM: An elementary inequality for psi function. Bull. Inst. Math. Acad. Sin. 3(3), 373-380 (2008) MathSciNetMATH
3.
Zurück zum Zitat Guo, BN, Qi, F: Some properties of the psi and polygamma functions. Hacet. J. Math. Stat. 39, 219-231 (2010) MathSciNetMATH Guo, BN, Qi, F: Some properties of the psi and polygamma functions. Hacet. J. Math. Stat. 39, 219-231 (2010) MathSciNetMATH
4.
5.
Zurück zum Zitat Mortici, C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215, 3443-3448 (2010) MathSciNetMATH Mortici, C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215, 3443-3448 (2010) MathSciNetMATH
7.
Zurück zum Zitat Mortici, C: A quicker convergence toward the gamma constant with the logarithm term involving the constant e. Carpath. J. Math. 26(1), 86-91 (2010) MathSciNetMATH Mortici, C: A quicker convergence toward the gamma constant with the logarithm term involving the constant e. Carpath. J. Math. 26(1), 86-91 (2010) MathSciNetMATH
9.
Zurück zum Zitat Qi, F, Cui, RQ, Chen, CP, Guo, RN: Some completely monotonic functions involving polygamma functions and an application. J. Math. Anal. Appl. 310, 303-308 (2005) MathSciNetCrossRefMATH Qi, F, Cui, RQ, Chen, CP, Guo, RN: Some completely monotonic functions involving polygamma functions and an application. J. Math. Anal. Appl. 310, 303-308 (2005) MathSciNetCrossRefMATH
11.
Zurück zum Zitat Sintǎmǎrian, A: Some inequalities regarding a generalization of Euler’s constant. J. Inequal. Pure Appl. Math. 9, 46 (2008) MathSciNetMATH Sintǎmǎrian, A: Some inequalities regarding a generalization of Euler’s constant. J. Inequal. Pure Appl. Math. 9, 46 (2008) MathSciNetMATH
14.
Zurück zum Zitat Wu, LL, Chu, YM: An inequality for the psi functions. Appl. Math. Sci. 2(9-12), 545-550 (2008) MathSciNetMATH Wu, LL, Chu, YM: An inequality for the psi functions. Appl. Math. Sci. 2(9-12), 545-550 (2008) MathSciNetMATH
15.
Zurück zum Zitat Wu, LL, Chu, YM, Tang, XM: Inequalities for the generalized logarithmic mean and psi functions. Int. J. Pure Appl. Math. 48(1), 117-122 (2008) MathSciNetMATH Wu, LL, Chu, YM, Tang, XM: Inequalities for the generalized logarithmic mean and psi functions. Int. J. Pure Appl. Math. 48(1), 117-122 (2008) MathSciNetMATH
16.
Zurück zum Zitat Yang, ZH, Chu, YM: Sharp bounds for psi function. Appl. Math. Comput. 268, 1055-1063 (2015) MathSciNet Yang, ZH, Chu, YM: Sharp bounds for psi function. Appl. Math. Comput. 268, 1055-1063 (2015) MathSciNet
17.
Zurück zum Zitat Zhang, XM, Chu, YM: An inequality involving the gamma function and the psi function. Int. J. Mod. Math. 3(1), 67-73 (2008) MathSciNetMATH Zhang, XM, Chu, YM: An inequality involving the gamma function and the psi function. Int. J. Mod. Math. 3(1), 67-73 (2008) MathSciNetMATH
18.
Zurück zum Zitat Zhao, TH, Yang, ZH, Chu, YM: Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, Article ID 193 (2015) MathSciNetCrossRefMATH Zhao, TH, Yang, ZH, Chu, YM: Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, Article ID 193 (2015) MathSciNetCrossRefMATH
19.
Zurück zum Zitat DeTemple, DW, Wang, SH: Half integer approximations for the partial sums of the harmonic series. J. Math. Anal. Appl. 160, 149-156 (1991) MathSciNetCrossRefMATH DeTemple, DW, Wang, SH: Half integer approximations for the partial sums of the harmonic series. J. Math. Anal. Appl. 160, 149-156 (1991) MathSciNetCrossRefMATH
21.
22.
Zurück zum Zitat Batir, N: Sharp bounds for the psi function and harmonic numbers. Math. Inequal. Appl. 14, 917-925 (2011) MathSciNetMATH Batir, N: Sharp bounds for the psi function and harmonic numbers. Math. Inequal. Appl. 14, 917-925 (2011) MathSciNetMATH
23.
Zurück zum Zitat Batir, N: Some new inequalities for gamma and polygamma functions. J. Inequal. Pure Appl. Math. 6, 103 (2005) MathSciNetMATH Batir, N: Some new inequalities for gamma and polygamma functions. J. Inequal. Pure Appl. Math. 6, 103 (2005) MathSciNetMATH
27.
Zurück zum Zitat Villarino, MB: Ramanujan’s harmonic number expansion into negative powers of triangular number. J. Inequal. Pure Appl. Math. 9, 89 (2008) MathSciNetMATH Villarino, MB: Ramanujan’s harmonic number expansion into negative powers of triangular number. J. Inequal. Pure Appl. Math. 9, 89 (2008) MathSciNetMATH
28.
Zurück zum Zitat Yang, ZH, Chu, YM, Zhang, XH: Necessary and sufficient conditions for functions involving the psi function to be completely monotonic. J. Inequal. Appl. 2015, Article ID 157 (2015) MathSciNetCrossRefMATH Yang, ZH, Chu, YM, Zhang, XH: Necessary and sufficient conditions for functions involving the psi function to be completely monotonic. J. Inequal. Appl. 2015, Article ID 157 (2015) MathSciNetCrossRefMATH
29.
Zurück zum Zitat Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, 9th printing edn. Applied Mathematics Series, vol. 55 (1970) MATH Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, 9th printing edn. Applied Mathematics Series, vol. 55 (1970) MATH
31.
Zurück zum Zitat Yang, ZH, Chu, YM, Tao, XJ: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014) MathSciNet Yang, ZH, Chu, YM, Tao, XJ: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014) MathSciNet
32.
Zurück zum Zitat Elezovic, N, Giordano, C, Pecaric, J: The best bounds for Gautschi’s inequality. Math. Inequal. Appl. 3, 239-252 (2000) MathSciNetMATH Elezovic, N, Giordano, C, Pecaric, J: The best bounds for Gautschi’s inequality. Math. Inequal. Appl. 3, 239-252 (2000) MathSciNetMATH
Metadaten
Titel
The monotonicity and convexity of a function involving psi function with applications
verfasst von
Bang-Cheng Sun
Zhi-Ming Liu
Qiang Li
Shen-Zhou Zheng
Publikationsdatum
01.12.2016
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2016
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1084-2

Weitere Artikel der Ausgabe 1/2016

Journal of Inequalities and Applications 1/2016 Zur Ausgabe

Premium Partner