Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. The Need for Engineering Antimicrobial Surfaces

verfasst von : S. Snigdha, Nandakumar Kalarikkal, Sabu Thomas, E. K. Radhakrishnan

Erschienen in: Engineered Antimicrobial Surfaces

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increasing incidences of life-threatening infectious diseases call for the development of antimicrobial materials and coating in every area of life. This chapters discusses the current scenario of infectious bacteria, their resistance to multiple drugs, and a serious lack of development of new antibiotics. The various techniques to produce effective antimicrobials and the need for multitargeted activity of antimicrobials is also discussed. Furthermore, it is suggested that the use of surface engineering and nanomaterials can significantly improve the chances of combating multiple drug-resistant strains of bacteria.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat French G (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 36:S3–S7CrossRef French G (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 36:S3–S7CrossRef
3.
Zurück zum Zitat WHO (2017) World Health Organization (WHO) publishes list of bacteria for which new antibiotics are urgently needed (2017) WHO (2017) World Health Organization (WHO) publishes list of bacteria for which new antibiotics are urgently needed (2017)
4.
Zurück zum Zitat Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056CrossRef Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056CrossRef
5.
Zurück zum Zitat Thomas JG, Litton I, Rinde H (2005) Economic impact of biofilms on treatment costs. In: Biofilms, infection, and antimicrobial therapy. CRC Press, pp 39–56 Thomas JG, Litton I, Rinde H (2005) Economic impact of biofilms on treatment costs. In: Biofilms, infection, and antimicrobial therapy. CRC Press, pp 39–56
6.
Zurück zum Zitat Abdullahi UF, Igwenagu E, Mu’azu A, Aliyu S, Umar MI (2016) Intrigues of biofilm: a perspective in veterinary medicine. Vet World 9(1):12 Abdullahi UF, Igwenagu E, Mu’azu A, Aliyu S, Umar MI (2016) Intrigues of biofilm: a perspective in veterinary medicine. Vet World 9(1):12
7.
Zurück zum Zitat Bowler PG (2018) Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J Wound Care 27(5):273–277CrossRef Bowler PG (2018) Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J Wound Care 27(5):273–277CrossRef
8.
Zurück zum Zitat Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu Y-W, Tang Z, Xu F-J (2018) Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromol 19(7):2805–2811CrossRef Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu Y-W, Tang Z, Xu F-J (2018) Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromol 19(7):2805–2811CrossRef
9.
Zurück zum Zitat Rauner N, Mueller C, Ring S, Boehle S, Strassburg A, Schoeneweiss C, Wasner M, Tiller JC (2018) A coating that combines lotus-effect and contact-active antimicrobial properties on silicone. Adv Func Mater 28(29):1801248CrossRef Rauner N, Mueller C, Ring S, Boehle S, Strassburg A, Schoeneweiss C, Wasner M, Tiller JC (2018) A coating that combines lotus-effect and contact-active antimicrobial properties on silicone. Adv Func Mater 28(29):1801248CrossRef
10.
Zurück zum Zitat Van Loosdrecht M, Lyklema J, Norde W, Schraa G, Zehnder A (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897CrossRef Van Loosdrecht M, Lyklema J, Norde W, Schraa G, Zehnder A (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897CrossRef
11.
Zurück zum Zitat Van der Westen R, Sjollema J, Molenaar R, Sharma PK, Van der Mei HC, Busscher HJ (2018) Floating and tether-coupled adhesion of bacteria to hydrophobic and hydrophilic surfaces. Langmuir 34(17):4937–4944CrossRef Van der Westen R, Sjollema J, Molenaar R, Sharma PK, Van der Mei HC, Busscher HJ (2018) Floating and tether-coupled adhesion of bacteria to hydrophobic and hydrophilic surfaces. Langmuir 34(17):4937–4944CrossRef
12.
Zurück zum Zitat Schubert A, Wassmann T, Holtappels M, Kurbad O, Krohn S, Bürgers R (2019) Predictability of microbial adhesion to dental materials by roughness parameters. Coatings 9(7):456CrossRef Schubert A, Wassmann T, Holtappels M, Kurbad O, Krohn S, Bürgers R (2019) Predictability of microbial adhesion to dental materials by roughness parameters. Coatings 9(7):456CrossRef
13.
Zurück zum Zitat Andreotti AM, De Sousa CA, Goiato MC, da Silva EVF, Duque C, Moreno A, Dos Santos DM (2018) In vitro evaluation of microbial adhesion on the different surface roughness of acrylic resin specific for ocular prosthesis. Eur J Dent 12(2):176CrossRef Andreotti AM, De Sousa CA, Goiato MC, da Silva EVF, Duque C, Moreno A, Dos Santos DM (2018) In vitro evaluation of microbial adhesion on the different surface roughness of acrylic resin specific for ocular prosthesis. Eur J Dent 12(2):176CrossRef
14.
Zurück zum Zitat Idumah CI, Hassan A, Ihuoma DE (2019) Recently emerging trends in polymer nanocomposites packaging materials. Polymer-Plast Technol Mater 58(10):1054–1109CrossRef Idumah CI, Hassan A, Ihuoma DE (2019) Recently emerging trends in polymer nanocomposites packaging materials. Polymer-Plast Technol Mater 58(10):1054–1109CrossRef
15.
Zurück zum Zitat Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46(1):90–97CrossRef Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46(1):90–97CrossRef
16.
Zurück zum Zitat Yuan H, Zhang X, Jiang Z, Chen X, Zhang X (2018) Quantitative criterion to predict cell adhesion by identifying dominant interaction between microorganisms and abiotic surfaces. Langmuir 35(9):3524–3533CrossRef Yuan H, Zhang X, Jiang Z, Chen X, Zhang X (2018) Quantitative criterion to predict cell adhesion by identifying dominant interaction between microorganisms and abiotic surfaces. Langmuir 35(9):3524–3533CrossRef
17.
Zurück zum Zitat Mello TP, Oliveira SS, Frasés S, Branquinha MH, Santos AL (2018) Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling 34(7):800–814 Mello TP, Oliveira SS, Frasés S, Branquinha MH, Santos AL (2018) Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling 34(7):800–814
18.
Zurück zum Zitat Zou S, Wei Z, Hu Y, Deng Y, Tong Z, Wang C (2014) Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polym Chem 5(14):4227–4234CrossRef Zou S, Wei Z, Hu Y, Deng Y, Tong Z, Wang C (2014) Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polym Chem 5(14):4227–4234CrossRef
19.
Zurück zum Zitat Shirbin SJ, Lam SJ, Chan NJ-A, Ozmen MM, Fu Q, O’Brien-Simpson N, Reynolds EC, Qiao GG (2016) Polypeptide-based macroporous cryogels with inherent antimicrobial properties: the importance of a macroporous structure. ACS Macro Lett 5(5):552–557CrossRef Shirbin SJ, Lam SJ, Chan NJ-A, Ozmen MM, Fu Q, O’Brien-Simpson N, Reynolds EC, Qiao GG (2016) Polypeptide-based macroporous cryogels with inherent antimicrobial properties: the importance of a macroporous structure. ACS Macro Lett 5(5):552–557CrossRef
20.
Zurück zum Zitat Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289(1–2):199–209CrossRef Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289(1–2):199–209CrossRef
21.
Zurück zum Zitat Hill BR, Watson Sr TF, Triplett BL (1991) Antimicrobial microporous coating. Google Patents Hill BR, Watson Sr TF, Triplett BL (1991) Antimicrobial microporous coating. Google Patents
22.
Zurück zum Zitat Choi BG, Park HS (2012) Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C 116(5):3207–3211CrossRef Choi BG, Park HS (2012) Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C 116(5):3207–3211CrossRef
23.
Zurück zum Zitat Díaz C, Schilardi P, Salvarezza R, Lorenzo Fernández, de Mele M (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23(22):11206–11210CrossRef Díaz C, Schilardi P, Salvarezza R, Lorenzo Fernández, de Mele M (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23(22):11206–11210CrossRef
24.
Zurück zum Zitat Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P (2014) Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30(31):9466–9476 Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P (2014) Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30(31):9466–9476
25.
Zurück zum Zitat Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7(1):55–71CrossRef Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7(1):55–71CrossRef
26.
Zurück zum Zitat Atefyekta S, Ercan B, Karlsson J, Taylor E, Chung S, Webster TJ, Andersson M (2016) Antimicrobial performance of Mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomed 11:977 Atefyekta S, Ercan B, Karlsson J, Taylor E, Chung S, Webster TJ, Andersson M (2016) Antimicrobial performance of Mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomed 11:977
27.
Zurück zum Zitat Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028CrossRef Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028CrossRef
28.
Zurück zum Zitat Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54CrossRef Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54CrossRef
29.
Zurück zum Zitat Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304CrossRef Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304CrossRef
30.
Zurück zum Zitat Ping X, Wang M, Xuewu G (2011) Surface modification of poly (ethylene terephthalate) (PET) film by gamma-ray induced grafting of poly (acrylic acid) and its application in antibacterial hybrid film. Radiat Phys Chem 80(4):567–572CrossRef Ping X, Wang M, Xuewu G (2011) Surface modification of poly (ethylene terephthalate) (PET) film by gamma-ray induced grafting of poly (acrylic acid) and its application in antibacterial hybrid film. Radiat Phys Chem 80(4):567–572CrossRef
31.
Zurück zum Zitat Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Biores Technol 88(3):179–184CrossRef Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Biores Technol 88(3):179–184CrossRef
32.
Zurück zum Zitat Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567CrossRef Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567CrossRef
33.
Zurück zum Zitat Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40(12):1014–1019CrossRef Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40(12):1014–1019CrossRef
34.
Zurück zum Zitat Jung EJ, Youn DK, Lee SH, No HK, Ha JG, Prinyawiwatkul W (2010) Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. Int J Food Sci Technol 45(4):676–682CrossRef Jung EJ, Youn DK, Lee SH, No HK, Ha JG, Prinyawiwatkul W (2010) Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. Int J Food Sci Technol 45(4):676–682CrossRef
35.
Zurück zum Zitat Shan B, Cai Y-Z, Brooks JD, Corke H (2007) Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem 55(14):5484–5490CrossRef Shan B, Cai Y-Z, Brooks JD, Corke H (2007) Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem 55(14):5484–5490CrossRef
36.
Zurück zum Zitat Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287CrossRef Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287CrossRef
37.
Zurück zum Zitat Brown DG, May-Dracka TL, Gagnon MM, Tommasi R (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57(23):10144–10161CrossRef Brown DG, May-Dracka TL, Gagnon MM, Tommasi R (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57(23):10144–10161CrossRef
38.
Zurück zum Zitat Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI (2017) Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. MBio 8(5):e01172–e01117CrossRef Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI (2017) Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. MBio 8(5):e01172–e01117CrossRef
39.
Zurück zum Zitat de Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV (2014) Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiol 14(1):118CrossRef de Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV (2014) Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiol 14(1):118CrossRef
40.
Zurück zum Zitat Bogdanos DP, Sakkas LI (2019) Infections: viruses and bacteria. In: Mosaic of autoimmunity. Elsevier, pp 203–213 Bogdanos DP, Sakkas LI (2019) Infections: viruses and bacteria. In: Mosaic of autoimmunity. Elsevier, pp 203–213
41.
Zurück zum Zitat Bolduc J, Nagel C, Li J, Hanson C, Fernholz P (2019) Performic acid biofilm prevention for industrial CO2 scrubbers. Google Patents Bolduc J, Nagel C, Li J, Hanson C, Fernholz P (2019) Performic acid biofilm prevention for industrial CO2 scrubbers. Google Patents
42.
Zurück zum Zitat Gustavsson R, Mandenius C-F, Löfgren S, Scheper T, Lindner P (2019) In situ microscopy as online tool for detecting microbial contaminations in cell culture. J Biotechnol 296:53–60CrossRef Gustavsson R, Mandenius C-F, Löfgren S, Scheper T, Lindner P (2019) In situ microscopy as online tool for detecting microbial contaminations in cell culture. J Biotechnol 296:53–60CrossRef
43.
Zurück zum Zitat White BP, Patel S, Tsui J, Chastain DB (2019) Adding double carbapenem therapy to the armamentarium against carbapenem-resistant Enterobacteriaceae bloodstream infections. Infect Dis 51(3):161–167CrossRef White BP, Patel S, Tsui J, Chastain DB (2019) Adding double carbapenem therapy to the armamentarium against carbapenem-resistant Enterobacteriaceae bloodstream infections. Infect Dis 51(3):161–167CrossRef
44.
Zurück zum Zitat Baker S, Perianova OV (2019) Bio-nanobactericides: an emanating class of nanoparticles towards combating multi-drug resistant pathogens. SN Appl Sci 1(7):699CrossRef Baker S, Perianova OV (2019) Bio-nanobactericides: an emanating class of nanoparticles towards combating multi-drug resistant pathogens. SN Appl Sci 1(7):699CrossRef
45.
Zurück zum Zitat Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki M-H, Lee BL, Jung Y, Yoo J-W (2019) Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 11(5):236CrossRef Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki M-H, Lee BL, Jung Y, Yoo J-W (2019) Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 11(5):236CrossRef
46.
Zurück zum Zitat Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10 Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10
47.
Zurück zum Zitat Post S, Shapiro J, Wuest W (2019) Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm Post S, Shapiro J, Wuest W (2019) Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm
48.
Zurück zum Zitat Zhen X, Lundborg CS, Sun X, Hu X, Dong H (2019) Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 8(1):1–23CrossRef Zhen X, Lundborg CS, Sun X, Hu X, Dong H (2019) Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 8(1):1–23CrossRef
49.
Zurück zum Zitat Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int
50.
Zurück zum Zitat Huang X, Chen G, Pan J, Chen X, Huang N, Wang X, Liu J (2016) Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. J Mater Chem B 4(37):6258–6270CrossRef Huang X, Chen G, Pan J, Chen X, Huang N, Wang X, Liu J (2016) Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. J Mater Chem B 4(37):6258–6270CrossRef
51.
Zurück zum Zitat Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal C (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355CrossRef Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal C (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355CrossRef
52.
Zurück zum Zitat Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, Di Pietro L, Perilli M, Amicosante G, Santucci S, Celenza G (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA)-Biomembranes 1860(11):2428–2435 Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, Di Pietro L, Perilli M, Amicosante G, Santucci S, Celenza G (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA)-Biomembranes 1860(11):2428–2435
53.
Zurück zum Zitat Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C (2019) Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 192:551–559CrossRef Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C (2019) Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 192:551–559CrossRef
54.
Zurück zum Zitat Tattevin P, Flécher E, Auffret V, Leclercq C, Boulé S, Vincentelli A, Dambrin C, Delmas C, Barandon L, Veniard V (2019) Risk factors and prognostic impact of left ventricular assist device-associated infections. Am Heart J 214:69–76CrossRef Tattevin P, Flécher E, Auffret V, Leclercq C, Boulé S, Vincentelli A, Dambrin C, Delmas C, Barandon L, Veniard V (2019) Risk factors and prognostic impact of left ventricular assist device-associated infections. Am Heart J 214:69–76CrossRef
55.
Zurück zum Zitat Chen J, Howell C, Haller CA, Patel MS, Ayala P, Moravec KA, Dai E, Liu L, Sotiri I, Aizenberg M (2017) An immobilized liquid interface prevents device associated bacterial infection in vivo. Biomaterials 113:80–92CrossRef Chen J, Howell C, Haller CA, Patel MS, Ayala P, Moravec KA, Dai E, Liu L, Sotiri I, Aizenberg M (2017) An immobilized liquid interface prevents device associated bacterial infection in vivo. Biomaterials 113:80–92CrossRef
56.
Zurück zum Zitat Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29CrossRef Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29CrossRef
57.
Zurück zum Zitat Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277 Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277
58.
Zurück zum Zitat Costa-Gouveia J, Ainsa JA, Brodin P, Lucia A (2017) How can nanoparticles contribute to antituberculosis therapy? Drug Discov Today 22(3):600–607CrossRef Costa-Gouveia J, Ainsa JA, Brodin P, Lucia A (2017) How can nanoparticles contribute to antituberculosis therapy? Drug Discov Today 22(3):600–607CrossRef
59.
Zurück zum Zitat Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, dos Santos CA (2017) Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int J Pharm 532(1):139–148CrossRef Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, dos Santos CA (2017) Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int J Pharm 532(1):139–148CrossRef
60.
Zurück zum Zitat Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B 146:70–83CrossRef Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B 146:70–83CrossRef
61.
Zurück zum Zitat Parham S, Wicaksono DH, Bagherbaigi S, Lee SL, Nur H (2016) Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chin Chem Soc 63(4):385–393CrossRef Parham S, Wicaksono DH, Bagherbaigi S, Lee SL, Nur H (2016) Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chin Chem Soc 63(4):385–393CrossRef
62.
Zurück zum Zitat Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128CrossRef Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128CrossRef
63.
Zurück zum Zitat Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910CrossRef Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910CrossRef
64.
Zurück zum Zitat Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874CrossRef Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874CrossRef
65.
Zurück zum Zitat Li S, Wang E, Tian C, Mao B, Kang Z, Li Q, Sun G (2008) Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties. J Solid State Chem 181(7):1650–1658CrossRef Li S, Wang E, Tian C, Mao B, Kang Z, Li Q, Sun G (2008) Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties. J Solid State Chem 181(7):1650–1658CrossRef
66.
Zurück zum Zitat Tung LM, Cong NX, Huy LT, Lan NT, Phan VN, Hoa NQ, Vinh LK, Thinh NV, Tai LT, Mølhave K (2016) Synthesis, characterizations of superparamagnetic Fe3O4–Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. J Nanosci Nanotechnol 16(6):5902–5912CrossRef Tung LM, Cong NX, Huy LT, Lan NT, Phan VN, Hoa NQ, Vinh LK, Thinh NV, Tai LT, Mølhave K (2016) Synthesis, characterizations of superparamagnetic Fe3O4–Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. J Nanosci Nanotechnol 16(6):5902–5912CrossRef
67.
Zurück zum Zitat Zaharia A, Muşat V, Ghisman VP, Baroiu N (2016) Antimicrobial hybrid biocompatible materials based on acrylic copolymers modified with (Ag) ZnO/chitosan composite nanoparticles. Eur Polymer J 84:550–564CrossRef Zaharia A, Muşat V, Ghisman VP, Baroiu N (2016) Antimicrobial hybrid biocompatible materials based on acrylic copolymers modified with (Ag) ZnO/chitosan composite nanoparticles. Eur Polymer J 84:550–564CrossRef
68.
Zurück zum Zitat Rezić I, Haramina T, Rezić T (2017) Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials. In: Food packaging. Elsevier, pp 497–532 Rezić I, Haramina T, Rezić T (2017) Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials. In: Food packaging. Elsevier, pp 497–532
69.
Zurück zum Zitat Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617CrossRef Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617CrossRef
70.
Zurück zum Zitat Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19 Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19
71.
Zurück zum Zitat Moorcroft SC, Jayne DG, Evans SD, Ong ZY (2018) Stimuli-responsive release of antimicrobials using hybrid inorganic nanoparticle-associated drug-delivery systems. Macromol Biosci 18(12):1800207CrossRef Moorcroft SC, Jayne DG, Evans SD, Ong ZY (2018) Stimuli-responsive release of antimicrobials using hybrid inorganic nanoparticle-associated drug-delivery systems. Macromol Biosci 18(12):1800207CrossRef
72.
Zurück zum Zitat Zheng K, Setyawati MI, Lim T-P, Leong DT, Xie J (2016) Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 10(8):7934–7942CrossRef Zheng K, Setyawati MI, Lim T-P, Leong DT, Xie J (2016) Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 10(8):7934–7942CrossRef
73.
Zurück zum Zitat Snigdha S, Rahul M, Kalarikkal N, Thomas S, Radhakrishnan E (2019) Poly (ε-caprolactone) microsphere decorated with Nano-ZnO based phytoformulation: a promising antimicrobial agent. J Inorg Organomet Polymers Mater 1–11 Snigdha S, Rahul M, Kalarikkal N, Thomas S, Radhakrishnan E (2019) Poly (ε-caprolactone) microsphere decorated with Nano-ZnO based phytoformulation: a promising antimicrobial agent. J Inorg Organomet Polymers Mater 1–11
74.
Zurück zum Zitat Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I (2017) Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol 102:60–66CrossRef Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I (2017) Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol 102:60–66CrossRef
75.
Zurück zum Zitat Senthilkumar R, Bhuvaneshwari V, Ranjithkumar R, Sathiyavimal S, Malayaman V, Chandarshekar B (2017) Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials. Int J Biol Macromol 104:1746–1752CrossRef Senthilkumar R, Bhuvaneshwari V, Ranjithkumar R, Sathiyavimal S, Malayaman V, Chandarshekar B (2017) Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials. Int J Biol Macromol 104:1746–1752CrossRef
76.
Zurück zum Zitat Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9(2):1600–1612CrossRef Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9(2):1600–1612CrossRef
77.
Zurück zum Zitat Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R (2019) Antimicrobial applications of clay nanotube-based composites. Nanomaterials 9(5):708CrossRef Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R (2019) Antimicrobial applications of clay nanotube-based composites. Nanomaterials 9(5):708CrossRef
78.
Zurück zum Zitat Reddy AB, Manjula B, Jayaramudu T, Sadiku E, Babu PA, Selvam SP (2016) 5-Fluorouracil loaded chitosan–PVA/Na+ MMT nanocomposite films for drug release and antimicrobial activity. Nano-micro Lett 8(3):260–269CrossRef Reddy AB, Manjula B, Jayaramudu T, Sadiku E, Babu PA, Selvam SP (2016) 5-Fluorouracil loaded chitosan–PVA/Na+ MMT nanocomposite films for drug release and antimicrobial activity. Nano-micro Lett 8(3):260–269CrossRef
79.
Zurück zum Zitat Rapacz-Kmita A, Bućko M, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C 70:471–478CrossRef Rapacz-Kmita A, Bućko M, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C 70:471–478CrossRef
80.
Zurück zum Zitat Zhang L, Chen J, Yu W, Zhao Q, Liu J (2018) Antimicrobial nanocomposites prepared from montmorillonite/Ag. J Nanomat Zhang L, Chen J, Yu W, Zhao Q, Liu J (2018) Antimicrobial nanocomposites prepared from montmorillonite/Ag. J Nanomat
81.
Zurück zum Zitat Pielichowski K (2016) Modern polymeric materials for environmental applications Pielichowski K (2016) Modern polymeric materials for environmental applications
82.
Zurück zum Zitat Al-Samhan M, Samuel J, Al-Attar F, Abraham G (2017) Comparative effects of MMT clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. Int J Polymer Sci Al-Samhan M, Samuel J, Al-Attar F, Abraham G (2017) Comparative effects of MMT clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. Int J Polymer Sci
83.
Zurück zum Zitat Edraki M, Zaarei D (2018) Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J Green Chem 2(3):171–280, 189–200 Edraki M, Zaarei D (2018) Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J Green Chem 2(3):171–280, 189–200
84.
Zurück zum Zitat Hu C-H, Xia M-S (2006) Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci 31(3–4):180–184CrossRef Hu C-H, Xia M-S (2006) Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci 31(3–4):180–184CrossRef
85.
Zurück zum Zitat Yan Y, Li C, Wu H, Du J, Feng J, Zhang J, Huang L, Tan S, Shi Q-S (2019) Montmorillonite-modified reduced graphene oxide stabilizes copper nanoparticles and enhances bacterial adsorption and antibacterial activity. ACS Appl Bio Mater Yan Y, Li C, Wu H, Du J, Feng J, Zhang J, Huang L, Tan S, Shi Q-S (2019) Montmorillonite-modified reduced graphene oxide stabilizes copper nanoparticles and enhances bacterial adsorption and antibacterial activity. ACS Appl Bio Mater
86.
Zurück zum Zitat Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682CrossRef Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682CrossRef
87.
Zurück zum Zitat Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–1512CrossRef Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–1512CrossRef
88.
Zurück zum Zitat Nigmatullin R, Gao F, Konovalova V (2008) Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci 43(17):5728–5733CrossRef Nigmatullin R, Gao F, Konovalova V (2008) Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci 43(17):5728–5733CrossRef
89.
Zurück zum Zitat Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116CrossRef Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116CrossRef
90.
Zurück zum Zitat Cloete TE (2003) Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegrad 51(4):277–282CrossRef Cloete TE (2003) Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegrad 51(4):277–282CrossRef
91.
Zurück zum Zitat Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res Part A: Off J Soc Biomaterials, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 88(2):448–453CrossRef Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res Part A: Off J Soc Biomaterials, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 88(2):448–453CrossRef
92.
Zurück zum Zitat Abdollahi M, Damirchi S, Shafafi M, Rezaei M, Ariaii P (2019) Carboxymethyl cellulose-agar biocomposite film activated with summer savory essential oil as an antimicrobial agent. Int J Biol Macromol 126:561–568CrossRef Abdollahi M, Damirchi S, Shafafi M, Rezaei M, Ariaii P (2019) Carboxymethyl cellulose-agar biocomposite film activated with summer savory essential oil as an antimicrobial agent. Int J Biol Macromol 126:561–568CrossRef
93.
Zurück zum Zitat Joo SH, Aggarwal S (2018) Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. J Environ Manage 225:62–74CrossRef Joo SH, Aggarwal S (2018) Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. J Environ Manage 225:62–74CrossRef
94.
Zurück zum Zitat Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446CrossRef Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446CrossRef
Metadaten
Titel
The Need for Engineering Antimicrobial Surfaces
verfasst von
S. Snigdha
Nandakumar Kalarikkal
Sabu Thomas
E. K. Radhakrishnan
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4630-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.