Skip to main content
Erschienen in: Theory of Computing Systems 3/2021

12.09.2020

The Non-hardness of Approximating Circuit Size

verfasst von: Eric Allender, Rahul Ilango, Neekon Vafa

Erschienen in: Theory of Computing Systems | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP is hard for SZK under rather powerful reductions (Allender and Das Inf. Comput. 256, 2–8, 2017), and is provably not hard under “local” reductions computable in TIME(n0.49) (Murray and Williams Theory Comput. 13(1), 1–22, 2017). The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses of P) under some of the more familiar notions of reducibility (such as many-one or Turing reductions computable in polynomial time or in AC0) is closely related to many of the longstanding open questions in complexity theory (Allender and Hirahara ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019; Allender et al. Comput. Complex. 26(2), 469–496, 2017; Hirahara and Santhanam 2017; Hirahara and Watanabe 2016; Hitchcock and Pavan 2015; Impagliazzo et al. 2018; Murray and Williams Theory Comput. 13(1), 1–22, 2017). All prior hardness results for MCSP hold also for computing somewhat weak approximations to the circuit complexity of a function (Allender et al. SIAM J. Comput. 35(6), 1467–1493, 2006; Allender and Das Inf. Comput. 256, 2–8, 2017; Allender et al. J. Comput. Syst. Sci. 77(1), 14–40, 2011; Hirahara and Santhanam 2017; Kabanets and Cai 2000; Rudow Inf. Process. Lett. 128, 1–4, 2017) (Subsequent to our work, a new hardness result has been announced (Ilango 2020) that relies on more exact size computations). Some of these results were proved by exploiting a connection to a notion of time-bounded Kolmogorov complexity (KT) and the corresponding decision problem (MKTP). More recently, a new approach for proving improved hardness results for MKTP was developed (Allender et al. SIAM J. Comput. 47(4), 1339–1372, 2018; Allender and Hirahara ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019), but this approach establishes only hardness of extremely good approximations of the form 1 + o(1), and these improved hardness results are not yet known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity class DET under nonuniform \(\leq _{\text {m}}^{\mathsf {AC}^{0}}\) reductions, implying MKTP is not in AC0[p] for any prime p (Allender and Hirahara ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019). It was still open if similar circuit lower bounds hold for MCSP (But see Golovnev et al. 2019; Ilango 2020). One possible avenue for proving a similar hardness result for MCSP would be to improve the hardness of approximation for MKTP beyond 1 + o(1) to ω(1), as KT-complexity and circuit size are polynomially-related. In this paper, we show that this approach cannot succeed. More specifically, we prove that PARITY does not reduce to the problem of computing superlinear approximations to KT-complexity or circuit size via AC0-Turing reductions that make O(1) queries. This is significant, since approximating any set in P/poly AC0-reduces to just one query of a much worse approximation of circuit size or KT-complexity (Oliveira and Santhanam 2017). For weaker approximations, we also prove non-hardness under more powerful reductions. Our non-hardness results are unconditional, in contrast to conditional results presented in Allender and Hirahara (ACM Trans. Comput. Theory 11(4), 27:1–27:27, 2019) (for more powerful reductions, but for much worse approximations). This highlights obstacles that would have to be overcome by any proof that MKTP or MCSP is hard for NP under AC0 reductions. It may also be a step toward confirming a conjecture of Murray and Williams, that MCSP is not NP-complete under logtime-uniform \(\leq _{\text {m}}^{\mathsf {AC}^{0}}\) reductions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The hardness magnification result we have stated here is from [25].
 
2
This promise problem is defined formally in Section 2.1.
 
3
Although Corollary 6 of [27] does not mention the number of queries, inspection of the proof shows that only one query is performed.
 
4
The problem 𝜖-GapMCSP is defined somewhat differently in [4] than here. See Section 2. Thus the form of 𝜖(n) looks different here than in [4].
 
Literatur
1.
Zurück zum Zitat Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: an isomorphism theorem and a gap theorem. J. Comput. Syst. Sci. 57(2), 127–143 (1998)MathSciNetCrossRef Agrawal, M., Allender, E., Rudich, S.: Reductions in circuit complexity: an isomorphism theorem and a gap theorem. J. Comput. Syst. Sci. 57(2), 127–143 (1998)MathSciNetCrossRef
2.
4.
Zurück zum Zitat Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimization and related problems. ACM Trans. Comput. Theory 11 (4), 27:1–27:27 (2019)MathSciNetCrossRef Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimization and related problems. ACM Trans. Comput. Theory 11 (4), 27:1–27:27 (2019)MathSciNetCrossRef
5.
Zurück zum Zitat Allender, E., Buhrman, H., Kouckỳ, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM J. Comput. 35(6), 1467–1493 (2006)MathSciNetCrossRef Allender, E., Buhrman, H., Kouckỳ, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM J. Comput. 35(6), 1467–1493 (2006)MathSciNetCrossRef
6.
Zurück zum Zitat Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput. 38(1), 63–84 (2008)MathSciNetCrossRef Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput. 38(1), 63–84 (2008)MathSciNetCrossRef
7.
Zurück zum Zitat Allender, E., Loui, M.C., Regan, K.W.: Reducibility and completeness. In: Algorithms and Theory of Computation Handbook, pp 23–23. Chapman & Hall/CRC (2010) Allender, E., Loui, M.C., Regan, K.W.: Reducibility and completeness. In: Algorithms and Theory of Computation Handbook, pp 23–23. Chapman & Hall/CRC (2010)
8.
Zurück zum Zitat Allender, E., Kouckỳ, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci. 77(1), 14–40 (2011)MathSciNetCrossRef Allender, E., Kouckỳ, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci. 77(1), 14–40 (2011)MathSciNetCrossRef
9.
Zurück zum Zitat Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem. Comput. Complex. 26(2), 469–496 (2017)MathSciNetCrossRef Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem. Comput. Complex. 26(2), 469–496 (2017)MathSciNetCrossRef
10.
Zurück zum Zitat Allender, E., Grochow, J.A., van Melkebeek, D., Moore, C., Morgan, A.: Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput. 47(4), 1339–1372 (2018)MathSciNetCrossRef Allender, E., Grochow, J.A., van Melkebeek, D., Moore, C., Morgan, A.: Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput. 47(4), 1339–1372 (2018)MathSciNetCrossRef
11.
Zurück zum Zitat Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size. In: Proceedings of the 14th International Computer Science Symposium in Russia (CSR), volume 11532 of Lecture Notes in Computer Science, pp 13–24. Springer (2019) Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size. In: Proceedings of the 14th International Computer Science Symposium in Russia (CSR), volume 11532 of Lecture Notes in Computer Science, pp 13–24. Springer (2019)
12.
Zurück zum Zitat Arora, S: AC0-reductions cannot prove the PCP theorem. Unpublished Manuscript (1995) Arora, S: AC0-reductions cannot prove the PCP theorem. Unpublished Manuscript (1995)
13.
Zurück zum Zitat Furst, M, Saxe, JB., Sipser, M: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)MathSciNetCrossRef Furst, M, Saxe, JB., Sipser, M: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17(1), 13–27 (1984)MathSciNetCrossRef
14.
Zurück zum Zitat Golovnev, A, Ilango, R, Impagliazzo, R, Kabanets, V, Kolokolova, A, Tal, A: AC0[p] lower bounds against MCSP via the coin problem. In: Proceedings of the 46th International Colloquium on Automata Languages, and Programming, (ICALP), volume 132 of LIPIcs, pp 66:1–66:15 (2019) Golovnev, A, Ilango, R, Impagliazzo, R, Kabanets, V, Kolokolova, A, Tal, A: AC0[p] lower bounds against MCSP via the coin problem. In: Proceedings of the 46th International Colloquium on Automata Languages, and Programming, (ICALP), volume 132 of LIPIcs, pp 66:1–66:15 (2019)
15.
Zurück zum Zitat Håstad, J: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge (1987) Håstad, J: Computational Limitations for Small Depth Circuits. MIT Press, Cambridge (1987)
17.
Zurück zum Zitat Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theory Comput. Grad. Surv. 4, 1–27 (2011) Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theory Comput. Grad. Surv. 4, 1–27 (2011)
18.
Zurück zum Zitat Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), pp 247–258 (2018) Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), pp 247–258 (2018)
19.
Zurück zum Zitat Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: Proceedings of the 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs, pp 7:1–7:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017) Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: Proceedings of the 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs, pp 7:1–7:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
20.
Zurück zum Zitat Hirahara, S, Watanabe, O: Limits of minimum circuit size problem as oracle. In: Proceedings of the 31st Computational Complexity Conference (CCC), volume 50 of LIPIcs, pp 18:1–18:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2016) Hirahara, S, Watanabe, O: Limits of minimum circuit size problem as oracle. In: Proceedings of the 31st Computational Complexity Conference (CCC), volume 50 of LIPIcs, pp 18:1–18:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2016)
21.
Zurück zum Zitat Hitchcock, J, Pavan, A: On the NP-completeness of the minimum circuit size problem. In: Proceedings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS), volume 45 of LIPIcs, pp 236–245. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015) Hitchcock, J, Pavan, A: On the NP-completeness of the minimum circuit size problem. In: Proceedings of the 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS), volume 45 of LIPIcs, pp 236–245. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)
22.
Zurück zum Zitat Ilango, R: Approaching MCSP from above and below: hardness for a conditional variant and AC0[p]. In: Proceedings of the 11th Innovations in Theoretical Computer Science Conference, (ITCS), volume 151 of LIPIcs, pp 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020) Ilango, R: Approaching MCSP from above and below: hardness for a conditional variant and AC0[p]. In: Proceedings of the 11th Innovations in Theoretical Computer Science Conference, (ITCS), volume 151 of LIPIcs, pp 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)
23.
Zurück zum Zitat Impagliazzo, R, Kabanets, V, Volkovich, I: The power of natural properties as oracles. In: Proceedings of the 33rd Computational Complexity Conference (CCC), volume 102 of LIPIcs, pp 7:1–7:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018) Impagliazzo, R, Kabanets, V, Volkovich, I: The power of natural properties as oracles. In: Proceedings of the 33rd Computational Complexity Conference (CCC), volume 102 of LIPIcs, pp 7:1–7:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)
24.
Zurück zum Zitat Kabanets, V, Cai, J-Y: Circuit minimization problem. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC), pp 73–79, New York (2000) Kabanets, V, Cai, J-Y: Circuit minimization problem. In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC), pp 73–79, New York (2000)
25.
Zurück zum Zitat McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-bounded compression imply strong separations of complexity classes. In: Proceedings of the 51st ACM Symposium on Theory of Computing (STOC), pp 1215–1225. ACM (2019) McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-bounded compression imply strong separations of complexity classes. In: Proceedings of the 51st ACM Symposium on Theory of Computing (STOC), pp 1215–1225. ACM (2019)
26.
Zurück zum Zitat Murray, C. D., Williams, RR: On the (non) NP-hardness of computing circuit complexity. Theory Comput. 13(1), 1–22 (2017)MathSciNetCrossRef Murray, C. D., Williams, RR: On the (non) NP-hardness of computing circuit complexity. Theory Comput. 13(1), 1–22 (2017)MathSciNetCrossRef
27.
Zurück zum Zitat Oliveira, I.C., Santhanam, R.: Conspiracies between learning algorithms, circuit lower bounds and pseudorandomness. In: Proceedings of the 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs, pp 18:1–18:49. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017) Oliveira, I.C., Santhanam, R.: Conspiracies between learning algorithms, circuit lower bounds and pseudorandomness. In: Proceedings of the 32nd Computational Complexity Conference (CCC), volume 79 of LIPIcs, pp 18:1–18:49. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)
28.
Zurück zum Zitat Oliveira, I. C., Santhanam, R.: Hardness magnification for natural problems. In: Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), pp 65–76 (2018) Oliveira, I. C., Santhanam, R.: Hardness magnification for natural problems. In: Proceedings of the 59th IEEE Symposium on Foundations of Computer Science (FOCS), pp 65–76 (2018)
29.
Zurück zum Zitat Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art lower bounds. In: Proceedings of the 34th Computational Complexity Conference (CCC), volume 137 of LIPIcs, pp 27:1–27:29. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019) Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art lower bounds. In: Proceedings of the 34th Computational Complexity Conference (CCC), volume 137 of LIPIcs, pp 27:1–27:29. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2019)
32.
Zurück zum Zitat Trakhtenbrot, B.: A survey of Russian approaches to perebor (brute-force searches) algorithms. IEEE Ann. Hist. Comput. 6(4), 384–400 (1984)CrossRef Trakhtenbrot, B.: A survey of Russian approaches to perebor (brute-force searches) algorithms. IEEE Ann. Hist. Comput. 6(4), 384–400 (1984)CrossRef
33.
Zurück zum Zitat Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer Science & Business Media (2013) Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer Science & Business Media (2013)
Metadaten
Titel
The Non-hardness of Approximating Circuit Size
verfasst von
Eric Allender
Rahul Ilango
Neekon Vafa
Publikationsdatum
12.09.2020
Verlag
Springer US
Erschienen in
Theory of Computing Systems / Ausgabe 3/2021
Print ISSN: 1432-4350
Elektronische ISSN: 1433-0490
DOI
https://doi.org/10.1007/s00224-020-10004-x

Weitere Artikel der Ausgabe 3/2021

Theory of Computing Systems 3/2021 Zur Ausgabe

OriginalPaper

Belga B-Trees