Skip to main content
Erschienen in: Measurement Techniques 12/2013

01.03.2013

The production of entropy of a supercooled liquid in the electrostatic levitation method

verfasst von: A. V. Kostanovskiy, M. E. Kostanovskaya

Erschienen in: Measurement Techniques | Ausgabe 12/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The change in the production of entropy with time and the connection between the force and the flux are investigated using an experimental thermogram for a spherical molybdenum sample by the electrostatic levitation method. It is found that during supercooling of the molybdenum liquid phase, the reliability of the linear relation between the force and the flux does not exceed 25%. Estimates of the maximum values of the amplitude of temperature fluctuations and of the production of entropy during supercooling of liquid nickel are given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. V. Kostanovskiy and M. E. Kostanovskaya, “Thermodynamic Application of the Electrostatic Levitation Method,” Izmer. Tekhn., No. 9, 34–37 (2012); Measur. Techn., 55, No. 9, 1043–1048 (2012). A. V. Kostanovskiy and M. E. Kostanovskaya, “Thermodynamic Application of the Electrostatic Levitation Method,” Izmer. Tekhn., No. 9, 34–37 (2012); Measur. Techn., 55, No. 9, 1043–1048 (2012).
2.
Zurück zum Zitat P.-F. Paradis, T. Ishikawa, and S. Yoda, “Noncontact measurements of thermophysical properties of molybdenum at high temperatures,” Int. J. Thermophysics, 23, No. 2, 555–568 (2002).CrossRef P.-F. Paradis, T. Ishikawa, and S. Yoda, “Noncontact measurements of thermophysical properties of molybdenum at high temperatures,” Int. J. Thermophysics, 23, No. 2, 555–568 (2002).CrossRef
3.
Zurück zum Zitat A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967). A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).
4.
Zurück zum Zitat V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], Energiya, Moscow (1975). V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], Energiya, Moscow (1975).
5.
Zurück zum Zitat D. Kondepudi and I. Prigogine, Modern Thermodynamics from Heat Engines to Dissipative Structures, John Wiley & Sons, Chichester (1999). D. Kondepudi and I. Prigogine, Modern Thermodynamics from Heat Engines to Dissipative Structures, John Wiley & Sons, Chichester (1999).
6.
Zurück zum Zitat M. Fogiel and R. Wike, The Thermodynamics Problem Solver, Research & Education Association, New Jersey (2004). M. Fogiel and R. Wike, The Thermodynamics Problem Solver, Research & Education Association, New Jersey (2004).
7.
Zurück zum Zitat V. E. Zinoviev, Thermal Properties of Metals at High Temperatures [in Russian], Metallurgiya, Moscow (1989). V. E. Zinoviev, Thermal Properties of Metals at High Temperatures [in Russian], Metallurgiya, Moscow (1989).
8.
Zurück zum Zitat V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972). V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972).
9.
Zurück zum Zitat A. E. Sheindlin (ed.), Thermal Properties of Molybdenum and Its Alloys. A Reference Book [in Russian], Metallurgiya, Moscow (1990). A. E. Sheindlin (ed.), Thermal Properties of Molybdenum and Its Alloys. A Reference Book [in Russian], Metallurgiya, Moscow (1990).
10.
Zurück zum Zitat E. E. Shpilrain and P. M. Kesselman, Principles of the Theory of the Thermal Properties of Materials [in Russian], Energiya, Moscow (1977). E. E. Shpilrain and P. M. Kesselman, Principles of the Theory of the Thermal Properties of Materials [in Russian], Energiya, Moscow (1977).
11.
Zurück zum Zitat A. V. Kostanovskii and M. E. Kostanovskaya, “The nonequilibrium thermodynamic conditions and properties of materials,” Izmer. Tekhn., No. 11, 41–46 (2008); Measur. Techn., 51, No. 11, 1204–1210 (2008). A. V. Kostanovskii and M. E. Kostanovskaya, “The nonequilibrium thermodynamic conditions and properties of materials,” Izmer. Tekhn., No. 11, 41–46 (2008); Measur. Techn., 51, No. 11, 1204–1210 (2008).
12.
Zurück zum Zitat P.-F. Paradis, T. Ishikawa, and S. Yoda, “Thermophysical property measurements of supercooled and liquid rhodium,” Int. J. Thermophysics, 24, No. 4, 1121–1136 (2003).CrossRef P.-F. Paradis, T. Ishikawa, and S. Yoda, “Thermophysical property measurements of supercooled and liquid rhodium,” Int. J. Thermophysics, 24, No. 4, 1121–1136 (2003).CrossRef
13.
Zurück zum Zitat P.-F. Paradis, T. Ishikawa, and N. Koike, “Thermophysical property measurements of liquid and supercooled cobalt,” High Temp. – High Press., 37, 5–11 (2008). P.-F. Paradis, T. Ishikawa, and N. Koike, “Thermophysical property measurements of liquid and supercooled cobalt,” High Temp. – High Press., 37, 5–11 (2008).
14.
Zurück zum Zitat W.-K. Rhim and T. Ishikawa, “Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator,” Int. J. Thermophysics, 21, No. 2, 429–443 (2000).CrossRef W.-K. Rhim and T. Ishikawa, “Thermophysical properties of molten germanium measured by a high-temperature electrostatic levitator,” Int. J. Thermophysics, 21, No. 2, 429–443 (2000).CrossRef
15.
Zurück zum Zitat A. J. Rulison and W.-K. Rhim, “Constant-pressure specific heat to hemispherical total emissivity ratio for undercooled liquid nickel, zirconium, and silicon,” Metallurg. Mater. Trans. B, 26B, 503–508 (1995).ADSCrossRef A. J. Rulison and W.-K. Rhim, “Constant-pressure specific heat to hemispherical total emissivity ratio for undercooled liquid nickel, zirconium, and silicon,” Metallurg. Mater. Trans. B, 26B, 503–508 (1995).ADSCrossRef
16.
Zurück zum Zitat P. Glansdorff and I. Prigogine, Thermodynamics of Structure, Stability and Fluctuations, Wiley, New York (1971). P. Glansdorff and I. Prigogine, Thermodynamics of Structure, Stability and Fluctuations, Wiley, New York (1971).
Metadaten
Titel
The production of entropy of a supercooled liquid in the electrostatic levitation method
verfasst von
A. V. Kostanovskiy
M. E. Kostanovskaya
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Measurement Techniques / Ausgabe 12/2013
Print ISSN: 0543-1972
Elektronische ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-013-0140-2

Weitere Artikel der Ausgabe 12/2013

Measurement Techniques 12/2013 Zur Ausgabe