Skip to main content
Erschienen in: Quantum Information Processing 1/2020

01.01.2020

The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling

verfasst von: Jiang-Mei Tang, Qing-Sheng Zeng, Yan-Bing Luo, Qiao-Yun Ye

Erschienen in: Quantum Information Processing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum entanglement is a unique phenomenon which can be described in quantum mechanics. There are two categories of quantum entanglement: one is based on a single-body system in various freedom degrees and another is found in the multi-body system. In recent years, the spin–orbit coupling effect has been widely concerned. Various electronic devices based on the spin–orbit coupling effect have been emerging in an endless stream and bringing great practical application value. At present, the relationship between single-particle commuting observables \( l_{z} ,s_{z} \) entangled states and the spin–orbit coupling is rarely reported. In this paper, based on the diverse freedom degrees of the quantum entanglement states in a single-body system, the correlation between the sole particle commuting observables \( l_{z} ,s_{z} \) entangled states and the spin–orbit coupling has been analyzed by MATLAB software and the degree of entanglement is measured according to von Neumann entropy. This work provides innovation to further understand quantum entanglement and demonstrates that there is a close relationship between the degree of entanglement and the spin–orbit coupling coefficient \( {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4} \). As \( j \) increases, the degree of the maximum entanglement firstly decreases, then increases, afterward decreases and then increases repeatedly, with the maximum value of entanglement degree being 0.6828. When \( j \) is beyond 85.5, the degree of entanglement will not make sense any longer.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSMATH Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSMATH
2.
Zurück zum Zitat Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23(49), 152 (1935)MATH Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23(49), 152 (1935)MATH
3.
Zurück zum Zitat Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)ADSMathSciNetMATH Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)ADSMathSciNetMATH
4.
Zurück zum Zitat Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55(1), 72 (1997)ADS Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55(1), 72 (1997)ADS
5.
Zurück zum Zitat Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Maps for Lorentz transformations of spin. Phys. Rev. A 73(3), 032104 (2006)ADSMathSciNet Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Maps for Lorentz transformations of spin. Phys. Rev. A 73(3), 032104 (2006)ADSMathSciNet
6.
Zurück zum Zitat Korbicz, J.K., Lewenstein, M.: Group-theoretical approach to entanglement. Phys. Rev. A 74(2), 022318 (2006)ADSMathSciNet Korbicz, J.K., Lewenstein, M.: Group-theoretical approach to entanglement. Phys. Rev. A 74(2), 022318 (2006)ADSMathSciNet
7.
Zurück zum Zitat Rauch, H., Werner, S.A.H.: Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement, vol. 20. Oxford University Press, Oxford (2015)MATH Rauch, H., Werner, S.A.H.: Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement, vol. 20. Oxford University Press, Oxford (2015)MATH
8.
Zurück zum Zitat Putz, M.V., Ori, O.: Bondonic Chemistry: Physical Origins and Entanglement Prospects Exotic Properties of Carbon Nanomatter, vol. 229. Springer, Dordrecht (2015) Putz, M.V., Ori, O.: Bondonic Chemistry: Physical Origins and Entanglement Prospects Exotic Properties of Carbon Nanomatter, vol. 229. Springer, Dordrecht (2015)
9.
Zurück zum Zitat Bal, P.: Physics of life: the dawn of quantum biology. Nat. News 474(7351), 272 (2011) Bal, P.: Physics of life: the dawn of quantum biology. Nat. News 474(7351), 272 (2011)
10.
Zurück zum Zitat Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9(1), 10 (2013) Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9(1), 10 (2013)
11.
Zurück zum Zitat Cai, J.: Quantum biology: explore quantum dynamics in biological systems. Sci. China Inf. Sci. 59(8), 081302 (2016) Cai, J.: Quantum biology: explore quantum dynamics in biological systems. Sci. China Inf. Sci. 59(8), 081302 (2016)
12.
Zurück zum Zitat Timco, G.A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R.J., Muryn, C.A., Amoretti, G.: Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 4(3), 173 (2009)ADS Timco, G.A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R.J., Muryn, C.A., Amoretti, G.: Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 4(3), 173 (2009)ADS
13.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetMATH Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetMATH
14.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATH Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATH
15.
Zurück zum Zitat Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)ADS Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)ADS
16.
Zurück zum Zitat Caban, P., Rembieliński, J.: Lorentz-covariant reduced spin density matrix and Einstein–Podolsky–Rose–Bohm correlations. Phys. Rev. A 72(1), 012103 (2005)ADS Caban, P., Rembieliński, J.: Lorentz-covariant reduced spin density matrix and Einstein–Podolsky–Rose–Bohm correlations. Phys. Rev. A 72(1), 012103 (2005)ADS
17.
Zurück zum Zitat Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)ADSMATH Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)ADSMATH
18.
Zurück zum Zitat Brukner, Č., Żukowski, M., Pan, J.W., Zeilinger, A.: Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004)ADSMathSciNetMATH Brukner, Č., Żukowski, M., Pan, J.W., Zeilinger, A.: Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004)ADSMathSciNetMATH
19.
Zurück zum Zitat Bovino, F.A., Giardina, M., Svozil, K., Vedral, V.: Spatial orientation by quantum telepathy. Int. J. Quantum Inf. 5, 43 (2007) Bovino, F.A., Giardina, M., Svozil, K., Vedral, V.: Spatial orientation by quantum telepathy. Int. J. Quantum Inf. 5, 43 (2007)
20.
Zurück zum Zitat Venzl, H., Freyberger, M.: Quantum estimation of a damping constant. Phys. Rev. A 75(4), 042322 (2007)ADS Venzl, H., Freyberger, M.: Quantum estimation of a damping constant. Phys. Rev. A 75(4), 042322 (2007)ADS
21.
Zurück zum Zitat Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330 (2004)ADS Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330 (2004)ADS
22.
Zurück zum Zitat Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85(9) (2010)ADS Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85(9) (2010)ADS
23.
Zurück zum Zitat Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)ADS Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)ADS
24.
Zurück zum Zitat Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)ADS Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)ADS
25.
Zurück zum Zitat Li, Q.T.: Theory and application of quantum entanglement measures. Ph.D. Thesis, Tsinghua University (2017) Li, Q.T.: Theory and application of quantum entanglement measures. Ph.D. Thesis, Tsinghua University (2017)
26.
Zurück zum Zitat Knight, P.: Quantum mechanics: where the weirdness comes from. Nature 395(6675), 12 (1998)ADS Knight, P.: Quantum mechanics: where the weirdness comes from. Nature 395(6675), 12 (1998)ADS
27.
Zurück zum Zitat Vedral, V.: Quantifying entanglement in macroscopic systems. Nature 453(7198), 1004 (2008)ADS Vedral, V.: Quantifying entanglement in macroscopic systems. Nature 453(7198), 1004 (2008)ADS
28.
Zurück zum Zitat Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrödinger cat” superposition state of an atom. Science 272(5265), 1131–1136 (1996)ADSMathSciNetMATH Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrödinger cat” superposition state of an atom. Science 272(5265), 1131–1136 (1996)ADSMathSciNetMATH
29.
Zurück zum Zitat Ruan, M.Q., Zeng, J.Y.: Complete sets of commuting observables of Greenberger–Horne–Zeilinger states. Phys. Rev. A 70(5), 052113 (2004)ADS Ruan, M.Q., Zeng, J.Y.: Complete sets of commuting observables of Greenberger–Horne–Zeilinger states. Phys. Rev. A 70(5), 052113 (2004)ADS
30.
Zurück zum Zitat Bittencourt, V.A., Bernardini, A.E.: Entanglement of Dirac bi-spinor states driven by Poincaré classes of SU (2) ⊗ SU (2) coupling potentials. Ann. Phys. 364, 182 (2016)ADSMATH Bittencourt, V.A., Bernardini, A.E.: Entanglement of Dirac bi-spinor states driven by Poincaré classes of SU (2) ⊗ SU (2) coupling potentials. Ann. Phys. 364, 182 (2016)ADSMATH
31.
32.
Zurück zum Zitat Slepyan, G., Boag, A., Mordachev, V., Sinkevich, E., Maksimenko, S., Kuzhir, P., Maffucci, A.: Anomalous electromagnetic coupling via entanglement at the nanoscale. New J. Phys. 19(2), 023014 (2017)ADS Slepyan, G., Boag, A., Mordachev, V., Sinkevich, E., Maksimenko, S., Kuzhir, P., Maffucci, A.: Anomalous electromagnetic coupling via entanglement at the nanoscale. New J. Phys. 19(2), 023014 (2017)ADS
33.
Zurück zum Zitat Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045 (2010)ADS Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045 (2010)ADS
35.
Zurück zum Zitat Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)ADS Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)ADS
36.
Zurück zum Zitat Zhang, N.: The magnetoelectric transport properties and spin dynamics at the oxide interfaces. Ph.D. Thesis, Lanzhou University (2017) Zhang, N.: The magnetoelectric transport properties and spin dynamics at the oxide interfaces. Ph.D. Thesis, Lanzhou University (2017)
37.
Zurück zum Zitat Cui, J.X.: Quantum effect in ultracold spin–orbit coupled atomic fermi gases and applications. Ph.D. Thesis, Tsinghua University (2013) Cui, J.X.: Quantum effect in ultracold spin–orbit coupled atomic fermi gases and applications. Ph.D. Thesis, Tsinghua University (2013)
38.
Zurück zum Zitat Zeng, J.Y.: Quantum Mechanics Tutorial, vol. 150. Science Press, Berlin (2014) Zeng, J.Y.: Quantum Mechanics Tutorial, vol. 150. Science Press, Berlin (2014)
39.
Zurück zum Zitat Wang, R.: Reseaches on quantum nonlocality and contextuality by weak microwave signal detection. Ph.D. Thesis, Southwest Jiaotong University (2017) Wang, R.: Reseaches on quantum nonlocality and contextuality by weak microwave signal detection. Ph.D. Thesis, Southwest Jiaotong University (2017)
41.
Zurück zum Zitat Paškauskas, R., You, L.: Quantum correlations in two-boson wave functions. Phys. Rev. A 64(4), 042310 (2001)ADS Paškauskas, R., You, L.: Quantum correlations in two-boson wave functions. Phys. Rev. A 64(4), 042310 (2001)ADS
42.
Zurück zum Zitat Xiang, L., De-Wei, W., Xi, W., Qiang, M., Kun, C., Chun-Yan, Y.: A method of evaluating the quality of dual-path entangled quantum microwave signal generated based on von Neumann entropy. Acta Phys. Sin. 65(11) (2016) Xiang, L., De-Wei, W., Xi, W., Qiang, M., Kun, C., Chun-Yan, Y.: A method of evaluating the quality of dual-path entangled quantum microwave signal generated based on von Neumann entropy. Acta Phys. Sin. 65(11) (2016)
43.
Zurück zum Zitat Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)ADSMATH Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)ADSMATH
44.
Zurück zum Zitat Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)ADSMathSciNetMATH Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)ADSMathSciNetMATH
45.
Zurück zum Zitat Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57(3), 1619 (1998)ADS Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57(3), 1619 (1998)ADS
46.
Zurück zum Zitat Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)ADS Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)ADS
47.
Zurück zum Zitat Cheng, P.X.: Study on purification of entanglement and local distinguishability of orthogonal quantum states. Ph.D. Thesis. 14, National University of Defense Technology (2003) Cheng, P.X.: Study on purification of entanglement and local distinguishability of orthogonal quantum states. Ph.D. Thesis. 14, National University of Defense Technology (2003)
48.
Zurück zum Zitat Bernardini, A.E., Mizrahi, S.S.: Relativistic dynamics compels a thermalized fermi gas to a unique intrinsic parity eigenstate. Phys. Scr. 89(7), 075105 (2014)ADS Bernardini, A.E., Mizrahi, S.S.: Relativistic dynamics compels a thermalized fermi gas to a unique intrinsic parity eigenstate. Phys. Scr. 89(7), 075105 (2014)ADS
49.
Zurück zum Zitat Sadiek, G., AlDrees, W., Abdallah, M.S.: Manipulation of two quantum systems through their mutual interaction in presence of a radiation field. arXiv:1802.01935 Sadiek, G., AlDrees, W., Abdallah, M.S.: Manipulation of two quantum systems through their mutual interaction in presence of a radiation field. arXiv:​1802.​01935
50.
Zurück zum Zitat Sun, S.H.: Basic concept of von Neumann entropy. Educ. Teach. Forum 43, 279 (2016) Sun, S.H.: Basic concept of von Neumann entropy. Educ. Teach. Forum 43, 279 (2016)
51.
Zurück zum Zitat Feng, C.: Study about five-fold-degenerate point of spin-2. Ph.D. Thesis. 1, Nanjing University (2019) Feng, C.: Study about five-fold-degenerate point of spin-2. Ph.D. Thesis. 1, Nanjing University (2019)
Metadaten
Titel
The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling
verfasst von
Jiang-Mei Tang
Qing-Sheng Zeng
Yan-Bing Luo
Qiao-Yun Ye
Publikationsdatum
01.01.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2537-6

Weitere Artikel der Ausgabe 1/2020

Quantum Information Processing 1/2020 Zur Ausgabe

Neuer Inhalt