Skip to main content

2022 | OriginalPaper | Buchkapitel

8. The Role of Artificial Intelligence in Firefighting

verfasst von : Jonathan L. Hodges, Brian Y. Lattimer, Vernon L. Champlin

Erschienen in: Handbook of Cognitive and Autonomous Systems for Fire Resilient Infrastructures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence (AI) as a discipline focuses on developing computer systems which can interpret raw data to make observations, interpretations, and decisions which traditionally have required human insight. There are numerous decisions which need to be made on the fire ground during structural fire suppression operations. What specific hazards exist, where are the exposures, what is the most effective method of extinguishment, and does the survivability profile warrant interior rescue operations to name a few. Due to the restrictive timeline of a fire, these decisions are often based on limited information. As buildings are designed with more intelligent systems, it will be even harder for emergency responders to analyze all the available data in making these decisions without relying on AI-based systems. This chapter provides an overview of AI, available data, and the benefits AI systems can bring in data interpretation and decision-making in the fireground.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. R. J. Hall and E. R. Twomey, “Challenges to Safety in the Built Environment,” in Fire Protection Handbook: Safety in the Built Environment, 20th ed., R. E. Solomon, Ed. Quincy, MA: National Fire Protection Association, 2008, pp. 3–29. J. R. J. Hall and E. R. Twomey, “Challenges to Safety in the Built Environment,” in Fire Protection Handbook: Safety in the Built Environment, 20th ed., R. E. Solomon, Ed. Quincy, MA: National Fire Protection Association, 2008, pp. 3–29.
2.
Zurück zum Zitat NFPA FAR Division, “The total cost of fire in the United States,” no. March, pp. 2–3, 2014. NFPA FAR Division, “The total cost of fire in the United States,” no. March, pp. 2–3, 2014.
3.
Zurück zum Zitat B. J. Klaene and R. Sanders, “Fireground Operations,” in Fire Protection Handbook: Organizing for Public Sector Emergency Response, 20th ed., Quincy, MA: National Fire Protection Association, 2008, pp. 3–11. B. J. Klaene and R. Sanders, “Fireground Operations,” in Fire Protection Handbook: Organizing for Public Sector Emergency Response, 20th ed., Quincy, MA: National Fire Protection Association, 2008, pp. 3–11.
4.
Zurück zum Zitat R. B. Gasaway, “Fireground Command Decision Making: Understanding the Barriers Challenging Commander Situation Awareness,” Capella University, 2008. R. B. Gasaway, “Fireground Command Decision Making: Understanding the Barriers Challenging Commander Situation Awareness,” Capella University, 2008.
5.
Zurück zum Zitat G. A. Klein and R. Calderwood, “Decision Models: Some Lessons From the Field,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 5, pp. 1018–1026, 1991. G. A. Klein and R. Calderwood, “Decision Models: Some Lessons From the Field,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 5, pp. 1018–1026, 1991.
6.
Zurück zum Zitat G. a Klein, R. Calderwood, and A. Clinton-cirocco, “Rapid Decision Making on the Fire Ground,” 1988. G. a Klein, R. Calderwood, and A. Clinton-cirocco, “Rapid Decision Making on the Fire Ground,” 1988.
7.
Zurück zum Zitat R. J. Looby, “Fire Fighter Understanding and Application of NIOSH Recommendations,” Grand Canyon University, 2020. R. J. Looby, “Fire Fighter Understanding and Application of NIOSH Recommendations,” Grand Canyon University, 2020.
8.
Zurück zum Zitat R. B. Gasaway, “Making Intuitive Decisions Under Stress: Understanding Fireground Incident Command Decision-Making,” Int. Fire Serv. J. Leadersh. Manag., vol. 1, no. 1, pp. 8–18, 2007. R. B. Gasaway, “Making Intuitive Decisions Under Stress: Understanding Fireground Incident Command Decision-Making,” Int. Fire Serv. J. Leadersh. Manag., vol. 1, no. 1, pp. 8–18, 2007.
9.
Zurück zum Zitat K. A. Hall, “The effect of computer-based simulation training on fire ground incident commander decision making,” 2010. K. A. Hall, “The effect of computer-based simulation training on fire ground incident commander decision making,” 2010.
10.
Zurück zum Zitat S. Gillespie, “Fire Ground Decision-Making: Transferring Virtual Knowledge to the Physical Environment,” 2013. S. Gillespie, “Fire Ground Decision-Making: Transferring Virtual Knowledge to the Physical Environment,” 2013.
11.
Zurück zum Zitat C. H. Wijkmark, M. M. Metallinou, and I. Heldal, “The Role of Virtual Simulation in Incident Commander Education – A field study,” in NIK 200x, 2020. C. H. Wijkmark, M. M. Metallinou, and I. Heldal, “The Role of Virtual Simulation in Incident Commander Education – A field study,” in NIK 200x, 2020.
12.
Zurück zum Zitat C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, Research Roadmap for Smart Fire Fighting. National Institute of Standards and Technology, 2015. C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, Research Roadmap for Smart Fire Fighting. National Institute of Standards and Technology, 2015.
13.
Zurück zum Zitat D. Patterson, Introduction to Artificial Intelligence. Prentice Hall, Inc., 1990. D. Patterson, Introduction to Artificial Intelligence. Prentice Hall, Inc., 1990.
14.
Zurück zum Zitat M. Chowdhury and A. W. Sadek, “Advantages and Limitations of Artificial Intelligence,” in Artificial Intelligence Applications to Critical Transportation Issues, Transportation Research Circular, 2012, pp. 6–8. M. Chowdhury and A. W. Sadek, “Advantages and Limitations of Artificial Intelligence,” in Artificial Intelligence Applications to Critical Transportation Issues, Transportation Research Circular, 2012, pp. 6–8.
15.
Zurück zum Zitat Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015. Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
16.
Zurück zum Zitat K. Siau and W. Wang, “Building trust in artificial intelligence, machine learning, and robotics,” Cut. Bus. Technol. J., vol. 31, no. 2, pp. 47–53, 2018. K. Siau and W. Wang, “Building trust in artificial intelligence, machine learning, and robotics,” Cut. Bus. Technol. J., vol. 31, no. 2, pp. 47–53, 2018.
17.
Zurück zum Zitat G. E. Marchant and R. A. Lindor, “The Coming Collision Between Autonomous Vehicles and the Liability System,” Santa Clara Law Rev., 2012. G. E. Marchant and R. A. Lindor, “The Coming Collision Between Autonomous Vehicles and the Liability System,” Santa Clara Law Rev., 2012.
18.
Zurück zum Zitat A. C. Ian Goodfellow, Yoshua Bengio, “The Deep Learning Book,” MIT Press, vol. 521, no. 7553, p. 785, 2017. A. C. Ian Goodfellow, Yoshua Bengio, “The Deep Learning Book,” MIT Press, vol. 521, no. 7553, p. 785, 2017.
19.
Zurück zum Zitat J. L. Hodges, “Predicting Large Domain Multi-Physics Fire Behavior Using Artificial Neural Networks,” Virginia Polytechnic Institute and State University, 2018. J. L. Hodges, “Predicting Large Domain Multi-Physics Fire Behavior Using Artificial Neural Networks,” Virginia Polytechnic Institute and State University, 2018.
20.
Zurück zum Zitat NFPA, NFPA 1620: Standard for Pre-Incident Planning. 2020. NFPA, NFPA 1620: Standard for Pre-Incident Planning. 2020.
21.
Zurück zum Zitat J. Burris, “NFIRS: Better Data for Better Decisions,” Fire Eng., vol. 153, no. 5, 2000. J. Burris, “NFIRS: Better Data for Better Decisions,” Fire Eng., vol. 153, no. 5, 2000.
22.
Zurück zum Zitat J. M. J. Watts, “Fire Risk Indexing,” in SFPE Handbook of Fire Protection Engineering, Fifth Edition, 2016, pp. 3158–3182. J. M. J. Watts, “Fire Risk Indexing,” in SFPE Handbook of Fire Protection Engineering, Fifth Edition, 2016, pp. 3158–3182.
23.
Zurück zum Zitat C. R. Jennings, “Urban Residential Fires: An Empirical Analysis of Building Stock and Socioeconomic Characteristics for Memphis, Tennessee,” p. 286, 1996. C. R. Jennings, “Urban Residential Fires: An Empirical Analysis of Building Stock and Socioeconomic Characteristics for Memphis, Tennessee,” p. 286, 1996.
24.
Zurück zum Zitat F. USFA National Fire Data Center, “Socioeconomic Factors and the Incidence of Fire,” no. June, pp. 1–35, 1997. F. USFA National Fire Data Center, “Socioeconomic Factors and the Incidence of Fire,” no. June, pp. 1–35, 1997.
25.
Zurück zum Zitat Y. Lizhong, C. Heng, Y. Yong, and F. Tingyong, “The effect of socioeconomic factors on fire in China,” J. Fire Sci., vol. 23, no. 6, pp. 451–467, 2005. Y. Lizhong, C. Heng, Y. Yong, and F. Tingyong, “The effect of socioeconomic factors on fire in China,” J. Fire Sci., vol. 23, no. 6, pp. 451–467, 2005.
26.
Zurück zum Zitat P. Chhetri, J. Corcoran, R. J. Stimson, and R. Inbakaran, “Modelling potential socio-economic determinants of building fires in South East Queensland,” Geogr. Res., vol. 48, no. 1, pp. 75–85, 2010. P. Chhetri, J. Corcoran, R. J. Stimson, and R. Inbakaran, “Modelling potential socio-economic determinants of building fires in South East Queensland,” Geogr. Res., vol. 48, no. 1, pp. 75–85, 2010.
27.
Zurück zum Zitat S. E. Schachterle, D. Bishai, W. Shields, R. Stepnitz, and A. C. Gielen, “Proximity to vacant buildings is associated with increased fire risk in Baltimore, Maryland, homes,” Inj. Prev., vol. 18, no. 2, pp. 98–102, 2012. S. E. Schachterle, D. Bishai, W. Shields, R. Stepnitz, and A. C. Gielen, “Proximity to vacant buildings is associated with increased fire risk in Baltimore, Maryland, homes,” Inj. Prev., vol. 18, no. 2, pp. 98–102, 2012.
28.
Zurück zum Zitat L. Garis, L. Thomas, S. Robinson, and A. Tyakoff, “Recovery Houses: Non-Compliance with the British Columbia Fire Code and Implications for Life Safety,” no. May, 2016. L. Garis, L. Thomas, S. Robinson, and A. Tyakoff, “Recovery Houses: Non-Compliance with the British Columbia Fire Code and Implications for Life Safety,” no. May, 2016.
29.
Zurück zum Zitat L. Garis and J. Clare, “Examining ‘regular’ fire-safety inspections: the missing relationship between timing of inspection and fire outcome,” 2012. L. Garis and J. Clare, “Examining ‘regular’ fire-safety inspections: the missing relationship between timing of inspection and fire outcome,” 2012.
30.
Zurück zum Zitat E. Copeland, “Big Data in the Big Apple,” 2015. E. Copeland, “Big Data in the Big Apple,” 2015.
31.
Zurück zum Zitat L. Garis and J. Clare, “A Dynamic Risk Based System for Scheduling Inspections A Dynamic Risk,” no. September, 2015. L. Garis and J. Clare, “A Dynamic Risk Based System for Scheduling Inspections A Dynamic Risk,” no. September, 2015.
32.
Zurück zum Zitat M. Madaio et al., “Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 185–194. M. Madaio et al., “Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 185–194.
33.
Zurück zum Zitat B. S. Walia et al., “A dynamic pipeline for spatio-temporal fire risk prediction,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 764–773, 2018. B. S. Walia et al., “A dynamic pipeline for spatio-temporal fire risk prediction,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 764–773, 2018.
34.
Zurück zum Zitat D. Liu, Z. Xu, Y. Zhou, and C. Fan, “Heat map visualisation of fire incidents based on transformed sigmoid risk model,” Fire Saf. J., vol. 109, no. January, p. 102863, 2019. D. Liu, Z. Xu, Y. Zhou, and C. Fan, “Heat map visualisation of fire incidents based on transformed sigmoid risk model,” Fire Saf. J., vol. 109, no. January, p. 102863, 2019.
35.
Zurück zum Zitat J. Anderson-Bell, C. Schillaci, and A. Lipani, “Predicting non-residential building fire risk using geospatial information and convolutional neural networks,” Remote Sens. Appl. Soc. Environ., vol. 21, no. January, p. 100470, 2021. J. Anderson-Bell, C. Schillaci, and A. Lipani, “Predicting non-residential building fire risk using geospatial information and convolutional neural networks,” Remote Sens. Appl. Soc. Environ., vol. 21, no. January, p. 100470, 2021.
36.
Zurück zum Zitat J. C. Chen and J. P. Gore, “Real-Time Data Analytics,” in Research roadmap for smart fire fighting, National Institute of Standards and Technology, 2015. J. C. Chen and J. P. Gore, “Real-Time Data Analytics,” in Research roadmap for smart fire fighting, National Institute of Standards and Technology, 2015.
37.
Zurück zum Zitat J. C. Chen and J. P. Gore, “Real-Time Data Analytics,” in Research Roadmap for Smart Fire Fighting, C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, Eds. National Institute of Standards and Technology, 2015, pp. 123–128. J. C. Chen and J. P. Gore, “Real-Time Data Analytics,” in Research Roadmap for Smart Fire Fighting, C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, Eds. National Institute of Standards and Technology, 2015, pp. 123–128.
38.
Zurück zum Zitat D. Liu, X. Xia, J. Chen, and S. Li, “Integrating Building Information Model and Augmented Reality for Drone-Based Building Inspection,” J. Comput. Civ. Eng., vol. 35, no. 2, p. 04020073, 2021. D. Liu, X. Xia, J. Chen, and S. Li, “Integrating Building Information Model and Augmented Reality for Drone-Based Building Inspection,” J. Comput. Civ. Eng., vol. 35, no. 2, p. 04020073, 2021.
39.
Zurück zum Zitat D. Zhang, J. Zhang, H. Xiong, Z. Cui, and D. Lu, “Taking advantage of collective intelligence and BIM-based virtual reality in fire safety inspection for commercial and public buildings,” Appl. Sci., vol. 9, no. 23, 2019. D. Zhang, J. Zhang, H. Xiong, Z. Cui, and D. Lu, “Taking advantage of collective intelligence and BIM-based virtual reality in fire safety inspection for commercial and public buildings,” Appl. Sci., vol. 9, no. 23, 2019.
40.
Zurück zum Zitat K. A. Kapalo and J. J. LaViola, “Failing to Plan is Planning to Fail: Capturing the Pre-incident Planning Needs of Firefighters,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 63, no. 1, pp. 612–616, 2019. K. A. Kapalo and J. J. LaViola, “Failing to Plan is Planning to Fail: Capturing the Pre-incident Planning Needs of Firefighters,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 63, no. 1, pp. 612–616, 2019.
41.
Zurück zum Zitat J. Beerthuis, “The Added Value of Virtual Reality Simulation for Safety and Security,” 2021. J. Beerthuis, “The Added Value of Virtual Reality Simulation for Safety and Security,” 2021.
42.
Zurück zum Zitat J. L. Hodges, B. Y. Lattimer, and K. D. Luxbacher, “Compartment fire predictions using transpose convolutional neural networks,” Fire Saf. J., vol. 108, no. November 2018, pp. 1–22, 2019. J. L. Hodges, B. Y. Lattimer, and K. D. Luxbacher, “Compartment fire predictions using transpose convolutional neural networks,” Fire Saf. J., vol. 108, no. November 2018, pp. 1–22, 2019.
43.
Zurück zum Zitat B. Y. Lattimer, J. L. Hodges, and A. M. Lattimer, “Using Machine Learning in Physics-based Simulation of Fire,” Fire Saf. J., 2020. B. Y. Lattimer, J. L. Hodges, and A. M. Lattimer, “Using Machine Learning in Physics-based Simulation of Fire,” Fire Saf. J., 2020.
44.
Zurück zum Zitat T. Buffington, J. M. Cabrera, A. Kurzawski, and O. A. Ezekoye, “Deep-Learning Emulators of Transient Compartment Fire Simulations for Inverse Problems and Room-Scale Calorimetry,” Fire Technol., 2020. T. Buffington, J. M. Cabrera, A. Kurzawski, and O. A. Ezekoye, “Deep-Learning Emulators of Transient Compartment Fire Simulations for Inverse Problems and Room-Scale Calorimetry,” Fire Technol., 2020.
45.
Zurück zum Zitat J. Norman, Fire Officer’s Handbook of Tactics, 4th ed. Fire Engineering, 2005. J. Norman, Fire Officer’s Handbook of Tactics, 4th ed. Fire Engineering, 2005.
46.
Zurück zum Zitat NFPA, NFPA 72: National Fire Alarm and Signaling Code. 2019. NFPA, NFPA 72: National Fire Alarm and Signaling Code. 2019.
47.
Zurück zum Zitat NFPA 13 Standard for the Installation of Sprinkler Systems. 2019. NFPA 13 Standard for the Installation of Sprinkler Systems. 2019.
48.
Zurück zum Zitat R. P. Schifiliti, R. L. P. Custer, and B. J. Meacham, “Design of Detection Systems,” in SFPE Handbook of Fire Protection Engineering, 5th Edition, Springer, 2016, pp. 1314--1377. R. P. Schifiliti, R. L. P. Custer, and B. J. Meacham, “Design of Detection Systems,” in SFPE Handbook of Fire Protection Engineering, 5th Edition, Springer, 2016, pp. 1314--1377.
49.
Zurück zum Zitat D. W. Stroup and D. D. Evans, “Use of computer fire models for analyzing thermal detector spacing,” Fire Saf. J., vol. 14, no. 1–2, pp. 33–45, 1988. D. W. Stroup and D. D. Evans, “Use of computer fire models for analyzing thermal detector spacing,” Fire Saf. J., vol. 14, no. 1–2, pp. 33–45, 1988.
50.
Zurück zum Zitat A. Gaur et al., “Fire Sensing Technologies: A Review,” IEEE Sens. J., vol. 19, no. 9, pp. 3191–3202, 2019. A. Gaur et al., “Fire Sensing Technologies: A Review,” IEEE Sens. J., vol. 19, no. 9, pp. 3191–3202, 2019.
51.
Zurück zum Zitat B. Ko, K. H. Cheong, and J. Y. Nam, “Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks,” Fire Saf. J., vol. 45, no. 4, pp. 262–270, 2010. B. Ko, K. H. Cheong, and J. Y. Nam, “Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks,” Fire Saf. J., vol. 45, no. 4, pp. 262–270, 2010.
52.
Zurück zum Zitat B. C. Ko, K. H. Cheong, and J. Y. Nam, “Fire detection based on vision sensor and support vector machines,” Fire Saf. J., vol. 44, no. 3, pp. 322–329, 2009. B. C. Ko, K. H. Cheong, and J. Y. Nam, “Fire detection based on vision sensor and support vector machines,” Fire Saf. J., vol. 44, no. 3, pp. 322–329, 2009.
53.
Zurück zum Zitat F. Yuan, “A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with AdaBoost for video smoke detection,” Pattern Recognit., vol. 45, no. 12, pp. 4326–4336, 2012. F. Yuan, “A double mapping framework for extraction of shape-invariant features based on multi-scale partitions with AdaBoost for video smoke detection,” Pattern Recognit., vol. 45, no. 12, pp. 4326–4336, 2012.
54.
Zurück zum Zitat P. Santana, P. Gomes, and J. Barata, “A vision-based system for early fire detection,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 739–744, 2012. P. Santana, P. Gomes, and J. Barata, “A vision-based system for early fire detection,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 739–744, 2012.
55.
Zurück zum Zitat S. Verstockt et al., “A multi-modal video analysis approach for car park fire detection,” Fire Saf. J., vol. 57, pp. 44–57, 2013. S. Verstockt et al., “A multi-modal video analysis approach for car park fire detection,” Fire Saf. J., vol. 57, pp. 44–57, 2013.
56.
Zurück zum Zitat D. K. Appana, R. Islam, S. A. Khan, and J. M. Kim, “A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems,” Inf. Sci. (Ny)., vol. 418–419, pp. 91–101, 2017. D. K. Appana, R. Islam, S. A. Khan, and J. M. Kim, “A video-based smoke detection using smoke flow pattern and spatial-temporal energy analyses for alarm systems,” Inf. Sci. (Ny)., vol. 418–419, pp. 91–101, 2017.
57.
Zurück zum Zitat J. Rong, D. Zhou, W. Yao, W. Gao, J. Chen, and J. Wang, “Fire flame detection based on GICA and target tracking,” Opt. Laser Technol., vol. 47, pp. 283–291, 2013. J. Rong, D. Zhou, W. Yao, W. Gao, J. Chen, and J. Wang, “Fire flame detection based on GICA and target tracking,” Opt. Laser Technol., vol. 47, pp. 283–291, 2013.
58.
Zurück zum Zitat H. J. Zhang, N. Zhang, and N. F. Xiao, “Fire detection and identification method based on visual attention mechanism,” Optik (Stuttg)., vol. 126, no. 24, pp. 5011–5018, 2015. H. J. Zhang, N. Zhang, and N. F. Xiao, “Fire detection and identification method based on visual attention mechanism,” Optik (Stuttg)., vol. 126, no. 24, pp. 5011–5018, 2015.
59.
Zurück zum Zitat K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, “Convolutional Neural Networks Based Fire Detection in Surveillance Videos,” IEEE Access, vol. 6, pp. 18174–18183, 2018. K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, “Convolutional Neural Networks Based Fire Detection in Surveillance Videos,” IEEE Access, vol. 6, pp. 18174–18183, 2018.
60.
Zurück zum Zitat S. M. Nemalidinne and D. Gupta, “Nonsubsampled contourlet domain visible and infrared image fusion framework for fire detection using pulse coupled neural network and spatial fuzzy clustering,” Fire Saf. J., vol. 101, no. August, pp. 84–101, 2018. S. M. Nemalidinne and D. Gupta, “Nonsubsampled contourlet domain visible and infrared image fusion framework for fire detection using pulse coupled neural network and spatial fuzzy clustering,” Fire Saf. J., vol. 101, no. August, pp. 84–101, 2018.
61.
Zurück zum Zitat F. Yuan, J. Shi, X. Xia, Y. Fang, Z. Fang, and T. Mei, “High-order local ternary patterns with locality preserving projection for smoke detection and image classification,” Inf. Sci. (Ny)., vol. 372, pp. 225–240, 2016. F. Yuan, J. Shi, X. Xia, Y. Fang, Z. Fang, and T. Mei, “High-order local ternary patterns with locality preserving projection for smoke detection and image classification,” Inf. Sci. (Ny)., vol. 372, pp. 225–240, 2016.
62.
Zurück zum Zitat G. Xu, Y. Zhang, Q. Zhang, G. Lin, and J. Wang, “Deep domain adaptation based video smoke detection using synthetic smoke images,” Fire Saf. J., vol. 93, pp. 53–59, 2017. G. Xu, Y. Zhang, Q. Zhang, G. Lin, and J. Wang, “Deep domain adaptation based video smoke detection using synthetic smoke images,” Fire Saf. J., vol. 93, pp. 53–59, 2017.
63.
Zurück zum Zitat W. S. Qureshi, M. Ekpanyapong, M. N. Dailey, S. Rinsurongkawong, A. Malenichev, and O. Krasotkina, “QuickBlaze: Early Fire Detection Using a Combined Video Processing Approach,” Fire Technol., vol. 52, no. 5, pp. 1293–1317, 2016. W. S. Qureshi, M. Ekpanyapong, M. N. Dailey, S. Rinsurongkawong, A. Malenichev, and O. Krasotkina, “QuickBlaze: Early Fire Detection Using a Combined Video Processing Approach,” Fire Technol., vol. 52, no. 5, pp. 1293–1317, 2016.
64.
Zurück zum Zitat F. Derbel, “Performance improvement of fire detectors by means of gas sensors and neural networks,” Fire Saf. J., vol. 39, no. 5, pp. 383–398, 2004. F. Derbel, “Performance improvement of fire detectors by means of gas sensors and neural networks,” Fire Saf. J., vol. 39, no. 5, pp. 383–398, 2004.
65.
Zurück zum Zitat T. Listyorini and R. Rahim, “A prototype fire detection implemented using the Internet of Things and fuzzy logic,” World Trans. Eng. Technol. Educ., vol. 16, no. 1, pp. 42–46, 2018. T. Listyorini and R. Rahim, “A prototype fire detection implemented using the Internet of Things and fuzzy logic,” World Trans. Eng. Technol. Educ., vol. 16, no. 1, pp. 42–46, 2018.
66.
Zurück zum Zitat Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016. Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016.
67.
Zurück zum Zitat Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, pp. 3212–3232, 2019. Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, pp. 3212–3232, 2019.
68.
Zurück zum Zitat NIST, “NIST Fire Calorimetry Database,” 2021. NIST, “NIST Fire Calorimetry Database,” 2021.
69.
Zurück zum Zitat V. Babrauskas, “Heat Release Rates,” in SFPE Handbook of Fire Protection Engineering, Fifth Edition, 2016, pp. 799–904. V. Babrauskas, “Heat Release Rates,” in SFPE Handbook of Fire Protection Engineering, Fifth Edition, 2016, pp. 799–904.
70.
Zurück zum Zitat P. Siebert and N. Venkatasubramanian, “Use of Data During an Emergency Event,” in Research roadmap for smart fire fighting, C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, Eds. National Institute of Standards and Technology, 2015, pp. 139–159. P. Siebert and N. Venkatasubramanian, “Use of Data During an Emergency Event,” in Research roadmap for smart fire fighting, C. Grant, A. Hamins, N. Bryner, A. Jones, and G. Koepke, Eds. National Institute of Standards and Technology, 2015, pp. 139–159.
71.
Zurück zum Zitat NFPA, NFPA 101: Life Safey Code. 2021. NFPA, NFPA 101: Life Safey Code. 2021.
72.
Zurück zum Zitat G. De Sanctis, J. Kohler, and M. Fontana, “Probabilistic assessment of the occupant load density in retail buildings,” Fire Saf. J., vol. 69, pp. 1–11, 2014. G. De Sanctis, J. Kohler, and M. Fontana, “Probabilistic assessment of the occupant load density in retail buildings,” Fire Saf. J., vol. 69, pp. 1–11, 2014.
73.
Zurück zum Zitat Z. Chen, J. Xu, and Y. C. Soh, “Modeling regular occupancy in commercial buildings using stochastic models,” Energy Build., vol. 103, pp. 216–223, 2015. Z. Chen, J. Xu, and Y. C. Soh, “Modeling regular occupancy in commercial buildings using stochastic models,” Energy Build., vol. 103, pp. 216–223, 2015.
74.
Zurück zum Zitat Z. Li and B. Dong, “A new modeling approach for short-term prediction of occupancy in residential buildings,” Build. Environ., vol. 121, pp. 277–290, 2017. Z. Li and B. Dong, “A new modeling approach for short-term prediction of occupancy in residential buildings,” Build. Environ., vol. 121, pp. 277–290, 2017.
75.
Zurück zum Zitat T. D. Räty, “Survey on contemporary remote surveillance systems for public safety,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 40, no. 5, pp. 493–515, 2010. T. D. Räty, “Survey on contemporary remote surveillance systems for public safety,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 40, no. 5, pp. 493–515, 2010.
76.
Zurück zum Zitat Z. Chen, C. Jiang, and L. Xie, “Building occupancy estimation and detection: A review,” Energy Build., vol. 169, pp. 260–270, 2018. Z. Chen, C. Jiang, and L. Xie, “Building occupancy estimation and detection: A review,” Energy Build., vol. 169, pp. 260–270, 2018.
77.
Zurück zum Zitat J. Ahmad, H. Larijani, R. Emmanuel, M. Mannion, and A. Javed, “Occupancy detection in non-residential buildings – A survey and novel privacy preserved occupancy monitoring solution,” Appl. Comput. Informatics, vol. 17, no. 2, pp. 279–295, 2018. J. Ahmad, H. Larijani, R. Emmanuel, M. Mannion, and A. Javed, “Occupancy detection in non-residential buildings – A survey and novel privacy preserved occupancy monitoring solution,” Appl. Comput. Informatics, vol. 17, no. 2, pp. 279–295, 2018.
78.
Zurück zum Zitat J. Zou, Q. Zhao, W. Yang, and F. Wang, “Occupancy detection in the office by analyzing surveillance videos and its application to building energy conservation,” Energy Build., vol. 152, pp. 385–398, 2017. J. Zou, Q. Zhao, W. Yang, and F. Wang, “Occupancy detection in the office by analyzing surveillance videos and its application to building energy conservation,” Energy Build., vol. 152, pp. 385–398, 2017.
79.
Zurück zum Zitat M. Amayri, A. Arora, S. Ploix, S. Bandhyopadyay, Q. D. Ngo, and V. R. Badarla, “Estimating occupancy in heterogeneous sensor environment,” Energy Build., vol. 129, pp. 46–58, 2016. M. Amayri, A. Arora, S. Ploix, S. Bandhyopadyay, Q. D. Ngo, and V. R. Badarla, “Estimating occupancy in heterogeneous sensor environment,” Energy Build., vol. 129, pp. 46–58, 2016.
80.
Zurück zum Zitat F. Wang et al., “Predictive control of indoor environment using occupant number detected by video data and CO2 concentration,” Energy Build., vol. 145, pp. 155–162, 2017. F. Wang et al., “Predictive control of indoor environment using occupant number detected by video data and CO2 concentration,” Energy Build., vol. 145, pp. 155–162, 2017.
81.
Zurück zum Zitat S. Pan, A. Bonde, J. Jing, L. Zhang, P. Zhang, and H. Y. Noh, “BOES: Building Occupancy Estimation System using sparse ambient vibration monitoring,” Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst. 2014, vol. 9061, no. April 2014, p. 90611O, 2014. S. Pan, A. Bonde, J. Jing, L. Zhang, P. Zhang, and H. Y. Noh, “BOES: Building Occupancy Estimation System using sparse ambient vibration monitoring,” Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst. 2014, vol. 9061, no. April 2014, p. 90611O, 2014.
82.
Zurück zum Zitat R. Bahroun, O. Michel, F. Frassati, M. Carmona, and J. L. Lacoume, “New algorithm for footstep localization using seismic sensors in an indoor environment,” J. Sound Vib., vol. 333, no. 3, pp. 1046–1066, 2014. R. Bahroun, O. Michel, F. Frassati, M. Carmona, and J. L. Lacoume, “New algorithm for footstep localization using seismic sensors in an indoor environment,” J. Sound Vib., vol. 333, no. 3, pp. 1046–1066, 2014.
83.
Zurück zum Zitat J. D. Poston, R. M. Buehrer, and P. A. Tarazaga, “Indoor footstep localization from structural dynamics instrumentation,” Mech. Syst. Signal Process., vol. 88, pp. 224–239, 2017. J. D. Poston, R. M. Buehrer, and P. A. Tarazaga, “Indoor footstep localization from structural dynamics instrumentation,” Mech. Syst. Signal Process., vol. 88, pp. 224–239, 2017.
84.
Zurück zum Zitat L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models,” Energy Build., vol. 112, pp. 28–39, 2016. L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models,” Energy Build., vol. 112, pp. 28–39, 2016.
85.
Zurück zum Zitat Z. Chen, M. K. Masood, and Y. C. Soh, “A fusion framework for occupancy estimation in office buildings based on environmental sensor data,” Energy Build., vol. 133, pp. 790–798, 2016. Z. Chen, M. K. Masood, and Y. C. Soh, “A fusion framework for occupancy estimation in office buildings based on environmental sensor data,” Energy Build., vol. 133, pp. 790–798, 2016.
86.
Zurück zum Zitat S. H. Ryu and H. J. Moon, “Development of an occupancy prediction model using indoor environmental data based on machine learning techniques,” Build. Environ., vol. 107, pp. 1–9, 2016. S. H. Ryu and H. J. Moon, “Development of an occupancy prediction model using indoor environmental data based on machine learning techniques,” Build. Environ., vol. 107, pp. 1–9, 2016.
87.
Zurück zum Zitat S. Zikos, A. Tsolakis, D. Meskos, A. Tryferidis, and D. Tzovaras, “Conditional Random Fields - Based approach for real-time building occupancy estimation with multi-sensory networks,” Autom. Constr., vol. 68, pp. 128–145, 2016. S. Zikos, A. Tsolakis, D. Meskos, A. Tryferidis, and D. Tzovaras, “Conditional Random Fields - Based approach for real-time building occupancy estimation with multi-sensory networks,” Autom. Constr., vol. 68, pp. 128–145, 2016.
88.
Zurück zum Zitat J. Chaney, E. Hugh Owens, and A. D. Peacock, “An evidence based approach to determining residential occupancy and its role in demand response management,” Energy Build., vol. 125, pp. 254–266, 2016. J. Chaney, E. Hugh Owens, and A. D. Peacock, “An evidence based approach to determining residential occupancy and its role in demand response management,” Energy Build., vol. 125, pp. 254–266, 2016.
89.
Zurück zum Zitat T. Labeodan, K. Aduda, W. Zeiler, and F. Hoving, “Experimental evaluation of the performance of chair sensors in an office space for occupancy detection and occupancy-driven control,” Energy Build., vol. 111, pp. 195–206, 2016. T. Labeodan, K. Aduda, W. Zeiler, and F. Hoving, “Experimental evaluation of the performance of chair sensors in an office space for occupancy detection and occupancy-driven control,” Energy Build., vol. 111, pp. 195–206, 2016.
90.
Zurück zum Zitat C. Jiang, M. K. Masood, Y. C. Soh, and H. Li, “Indoor occupancy estimation from carbon dioxide concentration,” Energy Build., vol. 131, pp. 132–141, 2016. C. Jiang, M. K. Masood, Y. C. Soh, and H. Li, “Indoor occupancy estimation from carbon dioxide concentration,” Energy Build., vol. 131, pp. 132–141, 2016.
91.
Zurück zum Zitat M. Gruber, A. Trüschel, and J. O. Dalenbäck, “CO2 sensors for occupancy estimations: Potential in building automation applications,” Energy Build., vol. 84, pp. 548–556, 2014. M. Gruber, A. Trüschel, and J. O. Dalenbäck, “CO2 sensors for occupancy estimations: Potential in building automation applications,” Energy Build., vol. 84, pp. 548–556, 2014.
92.
Zurück zum Zitat H. Zou, H. Jiang, J. Yang, L. Xie, and C. J. Spanos, “Non-intrusive occupancy sensing in commercial buildings,” Energy Build., vol. 154, pp. 633–643, 2017. H. Zou, H. Jiang, J. Yang, L. Xie, and C. J. Spanos, “Non-intrusive occupancy sensing in commercial buildings,” Energy Build., vol. 154, pp. 633–643, 2017.
93.
Zurück zum Zitat R. K. K. Yuen, E. W. M. Lee, S. M. Lo, and G. H. Yeoh, “Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis,” Fire Saf. J., vol. 41, no. 6, pp. 478–485, 2006. R. K. K. Yuen, E. W. M. Lee, S. M. Lo, and G. H. Yeoh, “Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis,” Fire Saf. J., vol. 41, no. 6, pp. 478–485, 2006.
94.
Zurück zum Zitat S. H. Koo, J. Fraser-Mitchell, and S. Welch, “Sensor-steered fire simulation,” Fire Saf. J., vol. 45, no. 3, pp. 193–205, 2010. S. H. Koo, J. Fraser-Mitchell, and S. Welch, “Sensor-steered fire simulation,” Fire Saf. J., vol. 45, no. 3, pp. 193–205, 2010.
95.
Zurück zum Zitat L. Han et al., “FireGrid: An e-infrastructure for next-generation emergency response support,” J. Parallel Distrib. Comput., vol. 70, no. 11, pp. 1128–1141, 2010. L. Han et al., “FireGrid: An e-infrastructure for next-generation emergency response support,” J. Parallel Distrib. Comput., vol. 70, no. 11, pp. 1128–1141, 2010.
96.
Zurück zum Zitat C. S. Ryu, “IoT-based intelligent for fire emergency response systems,” Int. J. Smart Home, vol. 9, no. 3, pp. 161–168, 2015. C. S. Ryu, “IoT-based intelligent for fire emergency response systems,” Int. J. Smart Home, vol. 9, no. 3, pp. 161–168, 2015.
97.
Zurück zum Zitat S. Rasouli, O.-C. Granmo, and J. Radianti, “A methodology for fire data analysis based on pattern recognition towards the disaster management,” 2015 2nd Int. Conf. Inf. Commun. Technol. Disaster Manag., pp. 130–137, 2015. S. Rasouli, O.-C. Granmo, and J. Radianti, “A methodology for fire data analysis based on pattern recognition towards the disaster management,” 2015 2nd Int. Conf. Inf. Commun. Technol. Disaster Manag., pp. 130–137, 2015.
98.
Zurück zum Zitat X. G. Wang, S. M. Lo, and H. P. Zhang, “Influence of feature extraction duration and step size on ANN based multisensor fire detection performance,” Procedia Eng., vol. 52, pp. 413–421, 2013. X. G. Wang, S. M. Lo, and H. P. Zhang, “Influence of feature extraction duration and step size on ANN based multisensor fire detection performance,” Procedia Eng., vol. 52, pp. 413–421, 2013.
99.
Zurück zum Zitat W. Jahn, G. Rein, and J. L. Torero, “Forecasting fire growth using an inverse zone modelling approach,” Fire Saf. J., vol. 46, no. 3, pp. 81–88, 2011. W. Jahn, G. Rein, and J. L. Torero, “Forecasting fire growth using an inverse zone modelling approach,” Fire Saf. J., vol. 46, no. 3, pp. 81–88, 2011.
100.
Zurück zum Zitat W. Jahn, G. Rein, and J. L. Torero, “Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation,” Adv. Eng. Softw., vol. 47, no. 1, pp. 114–126, 2012. W. Jahn, G. Rein, and J. L. Torero, “Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation,” Adv. Eng. Softw., vol. 47, no. 1, pp. 114–126, 2012.
101.
Zurück zum Zitat K. J. Overholt and O. A. Ezekoye, “Characterizing Heat Release Rates Using an Inverse Fire Modeling Technique,” Fire Technol., vol. 48, no. 4, pp. 893–909, 2012. K. J. Overholt and O. A. Ezekoye, “Characterizing Heat Release Rates Using an Inverse Fire Modeling Technique,” Fire Technol., vol. 48, no. 4, pp. 893–909, 2012.
102.
Zurück zum Zitat K. J. Overholt, “Forward and Inverse Modeling of Fire Physics Towards Fire Scene Reconstructions,” University of Texas at Austin, 2013. K. J. Overholt, “Forward and Inverse Modeling of Fire Physics Towards Fire Scene Reconstructions,” University of Texas at Austin, 2013.
103.
Zurück zum Zitat S. D. Guo, R. Yang, H. Zhang, and X. Zhang, “New Inverse Model for Detecting Fire-Source Location and Intensity,” J. Thermophys. Heat Transf., vol. 24, no. 4, pp. 745–755, 2010. S. D. Guo, R. Yang, H. Zhang, and X. Zhang, “New Inverse Model for Detecting Fire-Source Location and Intensity,” J. Thermophys. Heat Transf., vol. 24, no. 4, pp. 745–755, 2010.
104.
Zurück zum Zitat N. Wu, R. Wang, H. Zhang, and L. Q. (United T. R. Center-China), “Decentralized Inverse Model for Estimating Building Fire Source Location and Intensity,” vol. 27, no. 3, 2012. N. Wu, R. Wang, H. Zhang, and L. Q. (United T. R. Center-China), “Decentralized Inverse Model for Estimating Building Fire Source Location and Intensity,” vol. 27, no. 3, 2012.
105.
Zurück zum Zitat C.-C. Lin and L. Wang, “Applications of data assimilation to forecasting indoor environment,” IEEE Int. Conf. Autom. Sci. Eng., vol. 2014-Janua, pp. 1097–1102, 2014. C.-C. Lin and L. Wang, “Applications of data assimilation to forecasting indoor environment,” IEEE Int. Conf. Autom. Sci. Eng., vol. 2014-Janua, pp. 1097–1102, 2014.
106.
Zurück zum Zitat C. C. Lin and L. Wang, “Forecasting smoke transport during compartment fires using a data assimilation model,” J. Fire Sci., vol. 33, no. 1, pp. 3–21, 2015. C. C. Lin and L. Wang, “Forecasting smoke transport during compartment fires using a data assimilation model,” J. Fire Sci., vol. 33, no. 1, pp. 3–21, 2015.
107.
Zurück zum Zitat C. Lin, G. Zhao, and L. L. Wang, “Using Real - Time Sensing Data for Predicting Future State of Building Fires,” IEEE Int. Conf. Autom. Sci. Eng., pp. 1313–1318, 2015. C. Lin, G. Zhao, and L. L. Wang, “Using Real - Time Sensing Data for Predicting Future State of Building Fires,” IEEE Int. Conf. Autom. Sci. Eng., pp. 1313–1318, 2015.
108.
Zurück zum Zitat C. C. Lin and L. (Leon) Wang, “Real-Time Forecasting of Building Fire Growth and Smoke Transport via Ensemble Kalman Filter,” Fire Technol., vol. 53, no. 3, pp. 1101–1121, 2017. C. C. Lin and L. (Leon) Wang, “Real-Time Forecasting of Building Fire Growth and Smoke Transport via Ensemble Kalman Filter,” Fire Technol., vol. 53, no. 3, pp. 1101–1121, 2017.
109.
Zurück zum Zitat W. Jahn, “Using suppression and detection devices to steer CFD fire forecast simulations,” Fire Saf. J., vol. 91, no. January, pp. 284–290, 2017. W. Jahn, “Using suppression and detection devices to steer CFD fire forecast simulations,” Fire Saf. J., vol. 91, no. January, pp. 284–290, 2017.
110.
Zurück zum Zitat W. Jahn, F. Sazunic, and C. Sing-Long, “Towards Real-Time Fire Data Synthesis Using Numerical Simulations,” J. Fire Sci., 2021. W. Jahn, F. Sazunic, and C. Sing-Long, “Towards Real-Time Fire Data Synthesis Using Numerical Simulations,” J. Fire Sci., 2021.
111.
Zurück zum Zitat L. Wang, Q. Chen, and Q. Chen, “THEORETICAL AND NUMERICAL STUDIES OF COUPLING MULTIZONE AND CFD MODELS FOR BUILDING AIR DISTRIBUTION SIMULATIONS,” pp. 348–361, 2007. L. Wang, Q. Chen, and Q. Chen, “THEORETICAL AND NUMERICAL STUDIES OF COUPLING MULTIZONE AND CFD MODELS FOR BUILDING AIR DISTRIBUTION SIMULATIONS,” pp. 348–361, 2007.
112.
Zurück zum Zitat Y. Ishida, “Method for Coupling Three-Dimensional Transient Pollutant Transport into One-Dimensional Transport Simulation Based on Concentration Response Factor,” ASHRAE Trans., vol. 114, 2008. Y. Ishida, “Method for Coupling Three-Dimensional Transient Pollutant Transport into One-Dimensional Transport Simulation Based on Concentration Response Factor,” ASHRAE Trans., vol. 114, 2008.
113.
Zurück zum Zitat M. Bartak, I. Beausoleil-morrison, J. A. Clarke, J. Denev, F. Drkal, and M. Lain, “Integrating CFD and building simulation,” vol. 37, pp. 865–871, 2002. M. Bartak, I. Beausoleil-morrison, J. A. Clarke, J. Denev, F. Drkal, and M. Lain, “Integrating CFD and building simulation,” vol. 37, pp. 865–871, 2002.
114.
Zurück zum Zitat W. Zhang, K. Hiyama, S. Kato, and Y. Ishida, “Building energy simulation considering spatial temperature distribution for nonuniform indoor environment,” Build. Environ., vol. 63, pp. 89–96, 2013. W. Zhang, K. Hiyama, S. Kato, and Y. Ishida, “Building energy simulation considering spatial temperature distribution for nonuniform indoor environment,” Build. Environ., vol. 63, pp. 89–96, 2013.
115.
Zurück zum Zitat F. Colella, G. Rein, V. Verda, and R. Borchiellini, “Multiscale modeling of transient flows from fire and ventilation in long tunnels,” Comput. Fluids, vol. 51, no. 1, pp. 16–29, 2011. F. Colella, G. Rein, V. Verda, and R. Borchiellini, “Multiscale modeling of transient flows from fire and ventilation in long tunnels,” Comput. Fluids, vol. 51, no. 1, pp. 16–29, 2011.
116.
Zurück zum Zitat J. Floyd, “Coupling a Network HVAC Model to a Computational Fluid Dynamics Model Using Large Eddy Simulation,” Fire Saf. Sci. 10, 2011. J. Floyd, “Coupling a Network HVAC Model to a Computational Fluid Dynamics Model Using Large Eddy Simulation,” Fire Saf. Sci. 10, 2011.
117.
Zurück zum Zitat I. Vermesi, G. Rein, F. Colella, and M. Valkvist, “Reducing The Computational Requirements for Simulating Tunnel Fires by Combining Multiscale Modelling and Multiple Processor Calculation,” pp. 1–16. I. Vermesi, G. Rein, F. Colella, and M. Valkvist, “Reducing The Computational Requirements for Simulating Tunnel Fires by Combining Multiscale Modelling and Multiple Processor Calculation,” pp. 1–16.
118.
Zurück zum Zitat A. Haghighat, K. Luxbacher, and B. Lattimer, “Development of a Methodology for Interface Boundary Selection in the Multiscale Road Tunnel Fire,” Fire Technol., vol. 54, no. 4, pp. 1043–1080, 2018. A. Haghighat, K. Luxbacher, and B. Lattimer, “Development of a Methodology for Interface Boundary Selection in the Multiscale Road Tunnel Fire,” Fire Technol., vol. 54, no. 4, pp. 1043–1080, 2018.
119.
Zurück zum Zitat M. Aleksandrov, C. Cheng, A. Rajabifard, and M. Kalantari, “Modelling and finding optimal evacuation strategy for tall buildings,” Saf. Sci., vol. 115, no. December 2018, pp. 247–255, 2019. M. Aleksandrov, C. Cheng, A. Rajabifard, and M. Kalantari, “Modelling and finding optimal evacuation strategy for tall buildings,” Saf. Sci., vol. 115, no. December 2018, pp. 247–255, 2019.
120.
Zurück zum Zitat M. Choi and S. Chi, “Optimal route selection model for fire evacuations based on hazard prediction data,” Simul. Model. Pract. Theory, vol. 94, no. December 2018, pp. 321–333, 2019. M. Choi and S. Chi, “Optimal route selection model for fire evacuations based on hazard prediction data,” Simul. Model. Pract. Theory, vol. 94, no. December 2018, pp. 321–333, 2019.
121.
Zurück zum Zitat M. Gamaleldin, Z. Liao, M. Asfour, and L. Zhao, “Optimizing the Egress Route Using a New Smoke Emulator IoT System,” IEEE Internet Things J., vol. 8, no. 11, pp. 9373–9382, 2021. M. Gamaleldin, Z. Liao, M. Asfour, and L. Zhao, “Optimizing the Egress Route Using a New Smoke Emulator IoT System,” IEEE Internet Things J., vol. 8, no. 11, pp. 9373–9382, 2021.
122.
Zurück zum Zitat H. Jiang, “Mobile Fire Evacuation System for Large Public Buildings Based on Artificial Intelligence and IoT,” IEEE Access, vol. 7, pp. 64101–64109, 2019. H. Jiang, “Mobile Fire Evacuation System for Large Public Buildings Based on Artificial Intelligence and IoT,” IEEE Access, vol. 7, pp. 64101–64109, 2019.
123.
Zurück zum Zitat E. Danzi, L. Fiorentini, and L. Marmo, FLAME: A Parametric Fire Risk Assessment Method Supporting Performance Based Approaches, vol. 57, no. 2. Springer US, 2021. E. Danzi, L. Fiorentini, and L. Marmo, FLAME: A Parametric Fire Risk Assessment Method Supporting Performance Based Approaches, vol. 57, no. 2. Springer US, 2021.
124.
Zurück zum Zitat J. Urbas, “Effectiveness of Pre-Applied Wetting Agents in Prevention of Wildland Urban Interface Fires,” Fire Mater., vol. 37, pp. 563–580, 2013. J. Urbas, “Effectiveness of Pre-Applied Wetting Agents in Prevention of Wildland Urban Interface Fires,” Fire Mater., vol. 37, pp. 563–580, 2013.
125.
Zurück zum Zitat R. W. Gorte and K. Bracmort, “Wildfire protection in the Wildland-Urban interface,” Congr. Res. Serv. Rep. Congr., pp. 99–104, 2012. R. W. Gorte and K. Bracmort, “Wildfire protection in the Wildland-Urban interface,” Congr. Res. Serv. Rep. Congr., pp. 99–104, 2012.
Metadaten
Titel
The Role of Artificial Intelligence in Firefighting
verfasst von
Jonathan L. Hodges
Brian Y. Lattimer
Vernon L. Champlin
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-98685-8_8

Premium Partner