Skip to main content
Erschienen in: Journal of Materials Science 8/2018

16.10.2017 | Interface Behavior

The role of carbon and tungsten disulphide nanotubes in the fracture of polymer-interlayered ceramic composites: a microscopy study

verfasst von: Konstantin Livanov, Hans Jelitto, Gerold A. Schneider, H. Daniel Wagner

Erschienen in: Journal of Materials Science | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-walled carbon nanotubes (MWNT) and tungsten disulphide nanotubes (WS2-INT) have been widely used to improve the strength and toughness of composite materials. The mechanisms of such improvements are extensively studied, but it is not often clear what prompts a specific reinforcement mechanism to work. In this work we prepared two similar systems reinforced with different nanofillers (MWNT and WS2-INT). Using in situ optical microscopy and post-fracture electron microscopy, we established that using different nanofillers results in a different type of fracture and a different reinforcement mechanism. When compared to non-reinforced composites both systems showed significant improvements in both strength and fracture toughness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The polymer interlayer in this case is thicker than typical.
 
Literatur
1.
Zurück zum Zitat Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef
2.
Zurück zum Zitat Tenne R, Rosentsveig R, Zak A (2013) Inorganic nanotubes and fullerene-like nanoparticles: synthesis, mechanical properties, and applications. Phys Status Solidi A 210:2253–2258CrossRef Tenne R, Rosentsveig R, Zak A (2013) Inorganic nanotubes and fullerene-like nanoparticles: synthesis, mechanical properties, and applications. Phys Status Solidi A 210:2253–2258CrossRef
3.
Zurück zum Zitat Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotech 6:1026–1030CrossRef Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotech 6:1026–1030CrossRef
4.
5.
Zurück zum Zitat Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
6.
Zurück zum Zitat Kaplan-Ashiri I, Tenne R (2016) On the mechanical properties of WS2 and MoS2 nanotubes and fullerene-like nanoparticles: in situ electron microscopy measurements. JOM 68:151–167CrossRef Kaplan-Ashiri I, Tenne R (2016) On the mechanical properties of WS2 and MoS2 nanotubes and fullerene-like nanoparticles: in situ electron microscopy measurements. JOM 68:151–167CrossRef
7.
Zurück zum Zitat Barber AH, Kaplan-Ashiri I, Cohen SR, Tenne R, Wagner HD (2005) Stochastic strength of nanotubes: an appraisal of available data. Compos Sci Technol 65:2380–2384CrossRef Barber AH, Kaplan-Ashiri I, Cohen SR, Tenne R, Wagner HD (2005) Stochastic strength of nanotubes: an appraisal of available data. Compos Sci Technol 65:2380–2384CrossRef
8.
Zurück zum Zitat Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2002) Processing and characterization of carbon nanotube/poly(styrene- co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923. doi:10.1023/A:1019659624567 CrossRef Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2002) Processing and characterization of carbon nanotube/poly(styrene- co-butyl acrylate) nanocomposites. J Mater Sci 37:3915–3923. doi:10.​1023/​A:​1019659624567 CrossRef
9.
Zurück zum Zitat Gorga RE, Cohen RE (2004) Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J Polym Sci Part B Polym Phys 42:2690–2702CrossRef Gorga RE, Cohen RE (2004) Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J Polym Sci Part B Polym Phys 42:2690–2702CrossRef
10.
Zurück zum Zitat Zhang W, Ge S, Wang Y, Rafailovich MH, Dhez O, Winesett DA, Ade H, Shafi KVPM, Ulman A, Popovitz-Biro R, Tenne R, Sokolov J (2003) Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites. Polymer 44:2109–2115CrossRef Zhang W, Ge S, Wang Y, Rafailovich MH, Dhez O, Winesett DA, Ade H, Shafi KVPM, Ulman A, Popovitz-Biro R, Tenne R, Sokolov J (2003) Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites. Polymer 44:2109–2115CrossRef
11.
Zurück zum Zitat Zohar E, Baruch S, Shneider M, Dodiuk H, Kenig S, Tenne R, Wagner HD (2011) The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J Adhesion Sci Technol 25:1603–1617CrossRef Zohar E, Baruch S, Shneider M, Dodiuk H, Kenig S, Tenne R, Wagner HD (2011) The effect of WS2 nanotubes on the properties of epoxy-based nanocomposites. J Adhesion Sci Technol 25:1603–1617CrossRef
12.
Zurück zum Zitat Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRef Zhan GD, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRef
13.
Zurück zum Zitat Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–544CrossRef Wang X, Padture NP, Tanaka H (2004) Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 3:539–544CrossRef
14.
Zurück zum Zitat Mirjalili V, Ramachandramoorthy R, Hubert P (2014) Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon 79:413–423CrossRef Mirjalili V, Ramachandramoorthy R, Hubert P (2014) Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon 79:413–423CrossRef
15.
Zurück zum Zitat Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon- nanotube forests. Nat Mater 5:457–462CrossRef Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon- nanotube forests. Nat Mater 5:457–462CrossRef
16.
Zurück zum Zitat Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194CrossRef Mamedov AA, Kotov NA, Prato M, Guldi DM, Wicksted JP, Hirsch A (2002) Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat Mater 1:190–194CrossRef
17.
Zurück zum Zitat Greenfeld I, Wagner HD (2015) Nanocomposite toughness, strength and stiffness: role of filler geometry. Nanocomposites 1:3–17CrossRef Greenfeld I, Wagner HD (2015) Nanocomposite toughness, strength and stiffness: role of filler geometry. Nanocomposites 1:3–17CrossRef
18.
Zurück zum Zitat Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162–1173CrossRef Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1162–1173CrossRef
19.
Zurück zum Zitat Livanov K, Yang L, Nissenbaum A, Wagner HD (2016) Interphase tuning for stronger and tougher composites. Sci Rep 6:26305CrossRef Livanov K, Yang L, Nissenbaum A, Wagner HD (2016) Interphase tuning for stronger and tougher composites. Sci Rep 6:26305CrossRef
20.
Zurück zum Zitat Alhazov D, Zussman E (2012) Study of the energy absorption capabilities of laminated glass using carbon nanotubes. Compos Sci Technol 72:681–687CrossRef Alhazov D, Zussman E (2012) Study of the energy absorption capabilities of laminated glass using carbon nanotubes. Compos Sci Technol 72:681–687CrossRef
21.
Zurück zum Zitat Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206CrossRef Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206CrossRef
22.
Zurück zum Zitat Bouville F, Maire E, Meille S, Van de Moortèle B, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13:508–514CrossRef Bouville F, Maire E, Meille S, Van de Moortèle B, Stevenson AJ, Deville S (2014) Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater 13:508–514CrossRef
23.
Zurück zum Zitat Launey ME, Ritchie RO (2009) On the fracture toughness of advanced materials. Adv Mater 21:2103–2110CrossRef Launey ME, Ritchie RO (2009) On the fracture toughness of advanced materials. Adv Mater 21:2103–2110CrossRef
24.
Zurück zum Zitat Livanov K, Jelitto H, Bar-On B, Schulte K, Schneider GA, Wagner DH (2015) Tough alumina/polymer layered composites with high ceramic content. J Am Ceram Soc 98:1285–1291CrossRef Livanov K, Jelitto H, Bar-On B, Schulte K, Schneider GA, Wagner DH (2015) Tough alumina/polymer layered composites with high ceramic content. J Am Ceram Soc 98:1285–1291CrossRef
25.
Zurück zum Zitat Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat Commun 5:3166CrossRef Mirkhalaf M, Dastjerdi AK, Barthelat F (2014) Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat Commun 5:3166CrossRef
26.
Zurück zum Zitat Behr S, Köllner A, Schneider GA (2016) Tailoring toughness and mechanical reliability by controlled defects: nature-inspired composite laminates of laser-perforated yttria-stabilized zirconia. Adv Eng Mater 18(11):1877–1883CrossRef Behr S, Köllner A, Schneider GA (2016) Tailoring toughness and mechanical reliability by controlled defects: nature-inspired composite laminates of laser-perforated yttria-stabilized zirconia. Adv Eng Mater 18(11):1877–1883CrossRef
27.
Zurück zum Zitat Behr S, Jungblut L, Swain MV, Schneider GA (2016) Shear strength and interfacial toughness characterization of sapphire-epoxy interfaces for nacre-inspired composites. ACS Appl Mater Interfaces 8(40):27322–27331CrossRef Behr S, Jungblut L, Swain MV, Schneider GA (2016) Shear strength and interfacial toughness characterization of sapphire-epoxy interfaces for nacre-inspired composites. ACS Appl Mater Interfaces 8(40):27322–27331CrossRef
28.
Zurück zum Zitat Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822CrossRef Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822CrossRef
29.
Zurück zum Zitat Norman DA, Robertson RE (2003) The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J Appl Polym Sci 90:2740–2751CrossRef Norman DA, Robertson RE (2003) The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J Appl Polym Sci 90:2740–2751CrossRef
30.
Zurück zum Zitat Drzal LT, Rich MJ, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. J Adhesion 16:1–30CrossRef Drzal LT, Rich MJ, Lloyd PF (1983) Adhesion of graphite fibers to epoxy matrices: I. The role of fiber surface treatment. J Adhesion 16:1–30CrossRef
31.
Zurück zum Zitat Leger L, Creton C (2008) Adhesion mechanisms at soft polymer interfaces. Phil Trans R Soc A 366:1425–1442CrossRef Leger L, Creton C (2008) Adhesion mechanisms at soft polymer interfaces. Phil Trans R Soc A 366:1425–1442CrossRef
32.
Zurück zum Zitat Kim JK, Ma YW (1998) Engineered interfaces in fiber reinforced composite. 1st edn, Chapter 6. Elsevier, New York, pp 239–277 Kim JK, Ma YW (1998) Engineered interfaces in fiber reinforced composite. 1st edn, Chapter 6. Elsevier, New York, pp 239–277
33.
Zurück zum Zitat Livanov K, Nissenbaum A, Wagner HD (2016) Nanocomposite thin film coatings for brittle materials. Nanocomposites 2:162–168CrossRef Livanov K, Nissenbaum A, Wagner HD (2016) Nanocomposite thin film coatings for brittle materials. Nanocomposites 2:162–168CrossRef
34.
Zurück zum Zitat Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46CrossRef Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46CrossRef
35.
Zurück zum Zitat Kuebler J, Blugan G, Jelitto H, Schneider GA, Dobedoe R (2007) Structural micro-layered ceramics with surfaces under tension and compression with increasing apparent fracture toughness. Key Eng Mater 336–338:2564–2568CrossRef Kuebler J, Blugan G, Jelitto H, Schneider GA, Dobedoe R (2007) Structural micro-layered ceramics with surfaces under tension and compression with increasing apparent fracture toughness. Key Eng Mater 336–338:2564–2568CrossRef
36.
Zurück zum Zitat Jelitto H, Hackbarth F, Özcoban H, Schneider GA (2013) Automated control of stable crack growth for r-curve measurements in brittle materials. Exp Mech 53:163–170CrossRef Jelitto H, Hackbarth F, Özcoban H, Schneider GA (2013) Automated control of stable crack growth for r-curve measurements in brittle materials. Exp Mech 53:163–170CrossRef
37.
Zurück zum Zitat Jelitto H, Felten F, Swain MV, Balke H, Schneider GA (2007) Measurement of the total energy release rate for cracks in PZT under combined mechanical and electrical loading. J Appl Mech 74:1197–1211CrossRef Jelitto H, Felten F, Swain MV, Balke H, Schneider GA (2007) Measurement of the total energy release rate for cracks in PZT under combined mechanical and electrical loading. J Appl Mech 74:1197–1211CrossRef
38.
Zurück zum Zitat Krause RF Jr (1988) Rising fracture toughness from the bending strength of indented alumina beams. J Am Ceram Soc 71:338–343CrossRef Krause RF Jr (1988) Rising fracture toughness from the bending strength of indented alumina beams. J Am Ceram Soc 71:338–343CrossRef
39.
40.
Zurück zum Zitat dos Santos SF, Rodrigues JA (2003) Correlation between fracture toughness, work of fracture and fractal dimensions of alumina-mullite-zirconia composites. Mater Res 6:219–222CrossRef dos Santos SF, Rodrigues JA (2003) Correlation between fracture toughness, work of fracture and fractal dimensions of alumina-mullite-zirconia composites. Mater Res 6:219–222CrossRef
41.
Zurück zum Zitat Piggott M (2002) Load bearing fibre composites, 2nd edn, Chapter 6, Kluwer, p 196 Piggott M (2002) Load bearing fibre composites, 2nd edn, Chapter 6, Kluwer, p 196
42.
Zurück zum Zitat Belenky A, Rittel D (2012) Static and dynamic flexural strength of 99.5% alumina: relation to porosity. Mech Mater 48:43–55CrossRef Belenky A, Rittel D (2012) Static and dynamic flexural strength of 99.5% alumina: relation to porosity. Mech Mater 48:43–55CrossRef
43.
Zurück zum Zitat Asloun EM, Nardin M, Schultz J (1989) Stress transfer in single-fibre composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility. J Mater Sci 24:1835–1844. doi:10.1007/BF01105713 CrossRef Asloun EM, Nardin M, Schultz J (1989) Stress transfer in single-fibre composites: effect of adhesion, elastic modulus of fibre and matrix, and polymer chain mobility. J Mater Sci 24:1835–1844. doi:10.​1007/​BF01105713 CrossRef
44.
Zurück zum Zitat Yang L, He X, Mei L, Tong L, Wanga R, Li Y (2012) Interfacial shear behavior of 3D composites reinforced with CNT-grafted carbon fibers. Compos A 43:1410–1418CrossRef Yang L, He X, Mei L, Tong L, Wanga R, Li Y (2012) Interfacial shear behavior of 3D composites reinforced with CNT-grafted carbon fibers. Compos A 43:1410–1418CrossRef
45.
Zurück zum Zitat Yang L, Greenfeld I, Wagner HD (2016) Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci Adv 2:e1500969CrossRef Yang L, Greenfeld I, Wagner HD (2016) Toughness of carbon nanotubes conforms to classic fracture mechanics. Sci Adv 2:e1500969CrossRef
Metadaten
Titel
The role of carbon and tungsten disulphide nanotubes in the fracture of polymer-interlayered ceramic composites: a microscopy study
verfasst von
Konstantin Livanov
Hans Jelitto
Gerold A. Schneider
H. Daniel Wagner
Publikationsdatum
16.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1674-5

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Science 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.