Skip to main content

2017 | OriginalPaper | Buchkapitel

15. The Role of Heat Transfer and Analysis Ensuing Heat Inertia in Thermal Measurements and Its Impact to Nonisothermal Kinetics

verfasst von : Pavel Holba, Jaroslav Šesták

Erschienen in: Thermal Physics and Thermal Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The basic interrelations and consequences of heat transfer (1701 Newton cooling law) are analyzed showing its unambiguous importance and historical origin already known since 1933 in the form of basic caloric equation by Tian. It results in the heat inertia due to the sample heat capacity changes and undertakes two forms, integral and differential, the latter specific in providing s-shape background of DTA peaks. Its impact in the DTA measurements is examined showing misinterpretation by the origin work of Borchard and Daniels leading to further abandonment. The heat inertia correction was already suggested by authors in 1978 and verified on the basis of externally inserted rectangular heat pulses. Further corrections to heat inertia waited until 2009 (Netzsch commercial software). Relations following from general kinetic equation for the first-order reactions are substantiated, and the kinetic compensation effect explained as a correlation of pair activation energy pre-exponential factor and maximum rate temperature-heating rate. Kissinger erroneous assumption on temperature of maximum reaction rate is examined, and a correct solution is then suggested while determining the correct temperature of maximum reaction/transition rate and its correlation to the apex of a DTA peak. Both the kinetic equation and Kissinger equation are shown crucial when including the heat inertia term. Often forgotten influence of thermodynamic equilibrium as to kinetic equation is analyzed giving away its significance. New concept of a more sophisticated nonisothermal kinetics is suggested happy to be first when introducing the concept of equilibrium background which stays an important part of advanced kinetics anticipating that our innovative notions of temperature inertia, gradients, and even the operational meaning of temperature itself may facilitate modern kinetic understanding. We believe that kinetic progress means practice-verified improvements while including detailed thermal phenomena of real thermoanalytical measurements, nor just making changes at any case. We neither should be afraid of changes while complicating our pervious practice nor should we feel troubled examining examples presented in this chapter. The chapter contains 72 references.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Monotropy and enantiotropy are terms coined by Otto Lehman (1855–1922) in 1888 to distinguish two types of phase transitions (aragonite to calcite as monotropic transition and α-quartz to β-quartz as enantiotropic transition). In present paper, these terms are used more generally not only for phase transitions but also for decompositions. The process of change from an unstable state into stable state is called as monotropic process, while enantiotropic process is a change from low-temperature stable state into high-temperature stable state at heating (or from high-temperature stable state to low-temperature stable state at cooling).
 
Literatur
1.
Zurück zum Zitat Newton I (1687) Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) Londini, jussi Societatus Regiae ac typis Josephi Streater; prostata pudplures bibliopolas Newton I (1687) Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) Londini, jussi Societatus Regiae ac typis Josephi Streater; prostata pudplures bibliopolas
2.
Zurück zum Zitat Newton I (1701) Scale graduum caloris. Calorum descriptiones & signa. Philos Trans 22:824–829 Newton I (1701) Scale graduum caloris. Calorum descriptiones & signa. Philos Trans 22:824–829
3.
Zurück zum Zitat Fourier JBJ (1822) Théorie analytique de la chaleur. Paris, English transl.: The Analytical Theory of Heat. Dover Publications, Mineola/New York 2003 Fourier JBJ (1822) Théorie analytique de la chaleur. Paris, English transl.: The Analytical Theory of Heat. Dover Publications, Mineola/New York 2003
4.
Zurück zum Zitat Fick AE (1855) Über Diffusion. Annalen der Phys. Chem. von Pogendorff 94:59CrossRef Fick AE (1855) Über Diffusion. Annalen der Phys. Chem. von Pogendorff 94:59CrossRef
5.
Zurück zum Zitat Tammann G (1905) Über die Anwendung der Thermische Analysen. Z Anorg Chem 45:289CrossRef Tammann G (1905) Über die Anwendung der Thermische Analysen. Z Anorg Chem 45:289CrossRef
6.
Zurück zum Zitat Mach E (1896) Die Principien der Wärmelehre. Verlag von JA Barth, Leipzig Mach E (1896) Die Principien der Wärmelehre. Verlag von JA Barth, Leipzig
7.
Zurück zum Zitat Mareš JJ. (2011) Hotness manifold, phenomenological temperature and other related concepts of thermal physics. Chapter 20 in book “Glassy amorphous and nano-crystalline materials”. (Šesták J, Mareš JJ, Hubík P, editors) London: Springer; p. 327–45; and (2015) Do we know what temperature is? J Therm Anal Calorim. 120:223–30 Mareš JJ. (2011) Hotness manifold, phenomenological temperature and other related concepts of thermal physics. Chapter 20 in book “Glassy amorphous and nano-crystalline materials”. (Šesták J, Mareš JJ, Hubík P, editors) London: Springer; p. 327–45; and (2015) Do we know what temperature is? J Therm Anal Calorim. 120:223–30
8.
Zurück zum Zitat Callen HB (1960) Thermodynamics: an introduction to thermostatics. New York: Wiley; and Tribus M. (1961) Thermostatics and thermodynamics: an introduction to energy, information and states of matter. New York: Nostrand Callen HB (1960) Thermodynamics: an introduction to thermostatics. New York: Wiley; and Tribus M. (1961) Thermostatics and thermodynamics: an introduction to energy, information and states of matter. New York: Nostrand
9.
Zurück zum Zitat Zemansky MV (1968) Heat and thermodynamics. McGraw-Hill/Kogakuscha, Tokyo Zemansky MV (1968) Heat and thermodynamics. McGraw-Hill/Kogakuscha, Tokyo
10.
Zurück zum Zitat Šesták J (1979) Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197–227; and Šesták J, Holba P (1975) Kinetics of thermal heterogeneous processes with the participation of solids. Chapter in: heterogeneous chemical reactions and reaction capability (Pavlyuchenko MM, Prodan I (eds)), Nauka Technika, Minsk, pp 519–531 (in Russian) Šesták J (1979) Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta 28:197–227; and Šesták J, Holba P (1975) Kinetics of thermal heterogeneous processes with the participation of solids. Chapter in: heterogeneous chemical reactions and reaction capability (Pavlyuchenko MM, Prodan I (eds)), Nauka Technika, Minsk, pp 519–531 (in Russian)
11.
Zurück zum Zitat Berg LG, Nikolaev AV, Rode EY (1944) Thermography. Izd. AN SSSR, Moskva-Leningrad (in Russian) Berg LG, Nikolaev AV, Rode EY (1944) Thermography. Izd. AN SSSR, Moskva-Leningrad (in Russian)
12.
Zurück zum Zitat Popov MM (1954) Thermometry and calorimetry Nauka, Moskva (in Russian) Popov MM (1954) Thermometry and calorimetry Nauka, Moskva (in Russian)
13.
Zurück zum Zitat Piloyan FO (1964) Introduction to thermography. Nauka, Moskva (in Russian) Piloyan FO (1964) Introduction to thermography. Nauka, Moskva (in Russian)
14.
Zurück zum Zitat Garn PD (1964) Thermoanalytical methods of investigation. Academic, New York Garn PD (1964) Thermoanalytical methods of investigation. Academic, New York
15.
Zurück zum Zitat Wendlandt WW (1964) Thermal methods of analysis. Wiley, New York Wendlandt WW (1964) Thermal methods of analysis. Wiley, New York
16.
Zurück zum Zitat Šesták J, Šatava V, Wendlandt WW (1973) The Study of Heterogeneous Processes by Thermal Analysis, Monograph as a special issue of Thermochimica Acta, Vol. 7, Elsevier, Amsterdam; and Šesták J (1984) Differential thermal analysis, Chapter 12 in his book “Thermophysical properties of solids: theoretical thermal analysis”. Elsevier, Amsterdam (ISBN 0 444 99653 2), Czech origin by Academia, Praha 1982 and Russian translation by Mir, Moscow 1988 Šesták J, Šatava V, Wendlandt WW (1973) The Study of Heterogeneous Processes by Thermal Analysis, Monograph as a special issue of Thermochimica Acta, Vol. 7, Elsevier, Amsterdam; and Šesták J (1984) Differential thermal analysis, Chapter 12 in his book “Thermophysical properties of solids: theoretical thermal analysis”. Elsevier, Amsterdam (ISBN 0 444 99653 2), Czech origin by Academia, Praha 1982 and Russian translation by Mir, Moscow 1988
17.
Zurück zum Zitat Chen R, Kirsh Y (1981) Analysis of thermally stimulated processes. Pergamum Press, Oxford, pp 109–110 Chen R, Kirsh Y (1981) Analysis of thermally stimulated processes. Pergamum Press, Oxford, pp 109–110
18.
Zurück zum Zitat Boerio-Goates J, Callen JE (1992) Differential thermal methods. Chapter 8 in book: determination of thermodynamic properties. (Rossiter BW, Beatzold RC, eds). Wiley, New York, pp 621–718 Boerio-Goates J, Callen JE (1992) Differential thermal methods. Chapter 8 in book: determination of thermodynamic properties. (Rossiter BW, Beatzold RC, eds). Wiley, New York, pp 621–718
19.
Zurück zum Zitat Tian A (1933) Recherches sue la calorimétrie. Généralisation de la méthode de compensation électrique: Microcalorimétrie. J de Chimie-Physiq 30:665–708 Tian A (1933) Recherches sue la calorimétrie. Généralisation de la méthode de compensation électrique: Microcalorimétrie. J de Chimie-Physiq 30:665–708
20.
21.
Zurück zum Zitat Holba P (1976) Thermodynamic aspects in thermal analysis. Silikáty (Prague) 20:45–56 (in Czech) Holba P (1976) Thermodynamic aspects in thermal analysis. Silikáty (Prague) 20:45–56 (in Czech)
22.
Zurück zum Zitat Nevřiva M, Holba P, Šesták J (1976) Utilization of DTA for the determination of transformation heats. Silikáty (Prague) 29:33–39 (in Czech) Nevřiva M, Holba P, Šesták J (1976) Utilization of DTA for the determination of transformation heats. Silikáty (Prague) 29:33–39 (in Czech)
23.
Zurück zum Zitat Šesták J, Holba P, Lombardi G (1977) Quantitative evaluation of thermal effects: theory and practice. Annali di Chimica (Roma) 67:73–87 Šesták J, Holba P, Lombardi G (1977) Quantitative evaluation of thermal effects: theory and practice. Annali di Chimica (Roma) 67:73–87
24.
Zurück zum Zitat Holba P (1974) On the applicability of isothermal kinetic equations for non-isothermal investigations of heterogeneous processes, Thermal Analysis Vol. 1. In: Buzas I (ed) Proc. 4th ICTA, Budapest, pp 33–46. AkadémiaiKiadó, Budapest 1975. (ISBN 963 05 0557 6) Holba P (1974) On the applicability of isothermal kinetic equations for non-isothermal investigations of heterogeneous processes, Thermal Analysis Vol. 1. In: Buzas I (ed) Proc. 4th ICTA, Budapest, pp 33–46. AkadémiaiKiadó, Budapest 1975. (ISBN 963 05 0557 6)
25.
Zurück zum Zitat Šesták J (2005) Thermometry and calorimetry, Chapter 12 in his book “Science of Heat and Thermophysical Studies: a generalized approach to thermal analysis”. Elsevier, Amsterdam, pp 344–376 Šesták J (2005) Thermometry and calorimetry, Chapter 12 in his book “Science of Heat and Thermophysical Studies: a generalized approach to thermal analysis”. Elsevier, Amsterdam, pp 344–376
26.
Zurück zum Zitat Xue Y, Cracknell AP. (1995) Advanced thermal inertia modeling, Int. J. Remote Sens 16:431–446; and Price JC (1977) Thermal inertia mapping: A new view of the Earth. J Geophys Res 82:(Oceans and Atmospheres) 2582–2590 Xue Y, Cracknell AP. (1995) Advanced thermal inertia modeling, Int. J. Remote Sens 16:431–446; and Price JC (1977) Thermal inertia mapping: A new view of the Earth. J Geophys Res 82:(Oceans and Atmospheres) 2582–2590
27.
Zurück zum Zitat Šesták J (2014) Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim 117:3–7CrossRef Šesták J (2014) Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim 117:3–7CrossRef
28.
Zurück zum Zitat Faktor MM, Hanks R (1967) Quantitative application of dynamic differential calorimetry. Part 1—theoretical and experimental evaluation. Trans Faraday Soc 63:1122–1129CrossRef Faktor MM, Hanks R (1967) Quantitative application of dynamic differential calorimetry. Part 1—theoretical and experimental evaluation. Trans Faraday Soc 63:1122–1129CrossRef
29.
Zurück zum Zitat Holba P, Nevřiva M (1977) Description of thermoanalytical curves and the analysis of DTA peak by means of computer technique. Silikáty (Prague) 21:19–23 (in Czech) Holba P, Nevřiva M (1977) Description of thermoanalytical curves and the analysis of DTA peak by means of computer technique. Silikáty (Prague) 21:19–23 (in Czech)
30.
Zurück zum Zitat Holba P, Nevřiva M, Šesták J (1978) Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta 23:223–231CrossRef Holba P, Nevřiva M, Šesták J (1978) Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta 23:223–231CrossRef
31.
Zurück zum Zitat Borchardt HJ, Daniels F (1957) The application of DTA to the study of reaction kinetics. J Am Chem Soc 79:41–46CrossRef Borchardt HJ, Daniels F (1957) The application of DTA to the study of reaction kinetics. J Am Chem Soc 79:41–46CrossRef
32.
Zurück zum Zitat Šesták J, Holba P (2013) Heat inertia and temperature gradient in the treatment of DTA peaks: existing on every occasion of real measurements but until now omitted. J Thermal Anal Calorim 113:1633–1643CrossRef Šesták J, Holba P (2013) Heat inertia and temperature gradient in the treatment of DTA peaks: existing on every occasion of real measurements but until now omitted. J Thermal Anal Calorim 113:1633–1643CrossRef
33.
Zurück zum Zitat Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRef Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRef
34.
Zurück zum Zitat Šesták J, Holba P, Živkovič Ž (2014) Doubts on Kissinger´s method of kinetic evaluation based on several conceptual models showing the difference between the maximum of reaction rate and the extreme of a DTA. J Min Metall Sect B-Metall 50:77–81CrossRef Šesták J, Holba P, Živkovič Ž (2014) Doubts on Kissinger´s method of kinetic evaluation based on several conceptual models showing the difference between the maximum of reaction rate and the extreme of a DTA. J Min Metall Sect B-Metall 50:77–81CrossRef
35.
Zurück zum Zitat Holba P, Šesták J (2014) Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem 40:486–495. (ISSN 1087–6596. doi:10.1134/S1087659614050058) and in Russian: Fizika I Khimiya Stekla, 2014; 40:645–657 Holba P, Šesták J (2014) Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem 40:486–495. (ISSN 1087–6596. doi:10.​1134/​S108765961405005​8) and in Russian: Fizika I Khimiya Stekla, 2014; 40:645–657
36.
Zurück zum Zitat Šesták J (2012) Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Thermal Anal Calor 110:5–16CrossRef Šesták J (2012) Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Thermal Anal Calor 110:5–16CrossRef
37.
Zurück zum Zitat Šesták J (2015) The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta 611:26–35CrossRef Šesták J (2015) The quandary aspects of non-isothermal kinetics beyond the ICTAC kinetic committee recommendations. Thermochim Acta 611:26–35CrossRef
38.
Zurück zum Zitat Piloyan GO, Ryabchikov IO, Novikova SO (1966) Determination of activation energies of chemical reactions by DTA. Nature 3067:1229CrossRef Piloyan GO, Ryabchikov IO, Novikova SO (1966) Determination of activation energies of chemical reactions by DTA. Nature 3067:1229CrossRef
39.
Zurück zum Zitat O´Neill MJ (1964) Analysis of the temperature controlled calorimeter. Anal Chem 36:1238–1246 O´Neill MJ (1964) Analysis of the temperature controlled calorimeter. Anal Chem 36:1238–1246
41.
Zurück zum Zitat Kaisersberger E, Moukhina E (2009) Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochim Acta 492:101–109 Kaisersberger E, Moukhina E (2009) Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochim Acta 492:101–109
42.
Zurück zum Zitat Illekova E, Aba B, Kuhnast FA (1992) Measurements of accurate specific heats of metallic glasses by DSC: analysis of theoretical principles and accuracies of suggested measurement procedure. Thermochim Acta 195:195–209CrossRef Illekova E, Aba B, Kuhnast FA (1992) Measurements of accurate specific heats of metallic glasses by DSC: analysis of theoretical principles and accuracies of suggested measurement procedure. Thermochim Acta 195:195–209CrossRef
43.
Zurück zum Zitat Gray AP (1968) Simple generalized theory for analysis of dynamic thermal measurements. In: Porter RS, Johnson JF (eds) Analytical calorimetry, vol. 1. . Plenum Press, New York, p 209 Gray AP (1968) Simple generalized theory for analysis of dynamic thermal measurements. In: Porter RS, Johnson JF (eds) Analytical calorimetry, vol. 1. . Plenum Press, New York, p 209
44.
Zurück zum Zitat Málek J (1992) The kinetic analysis of non-isothermal data. Thermochim. Acta 200: 257–269; and (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta 355: 239–253; and Málek J, Mitsuhashi T, Criado JM (2001) Kinetic analysis of solid-state processes. J Mater Res 16:1862–1871CrossRef Málek J (1992) The kinetic analysis of non-isothermal data. Thermochim. Acta 200: 257–269; and (2000) Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta 355: 239–253; and Málek J, Mitsuhashi T, Criado JM (2001) Kinetic analysis of solid-state processes. J Mater Res 16:1862–1871CrossRef
45.
Zurück zum Zitat Koga N (1997) Physico-geometric kinetics of solid-state reactions by thermal analysis. J. Therm. Anal. 49:45–56; and Koga N, Tanaka H (2002) A physico-geometric approach to the kinetics of solid-state reactions. Thermochim Acta 388:41–61CrossRef Koga N (1997) Physico-geometric kinetics of solid-state reactions by thermal analysis. J. Therm. Anal. 49:45–56; and Koga N, Tanaka H (2002) A physico-geometric approach to the kinetics of solid-state reactions. Thermochim Acta 388:41–61CrossRef
46.
Zurück zum Zitat Avramov I, Šesták J (2014) Generalized kinetics of overall phase transition explicit to crystallization. J Therm Anal Calorim 118:1715–1720CrossRef Avramov I, Šesták J (2014) Generalized kinetics of overall phase transition explicit to crystallization. J Therm Anal Calorim 118:1715–1720CrossRef
47.
Zurück zum Zitat Galwey AK (2006) What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition? J Therm Anal Calor 86:267–286CrossRef Galwey AK (2006) What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition? J Therm Anal Calor 86:267–286CrossRef
48.
Zurück zum Zitat Šesták J (2011) Citation records and some forgotten anniversary in thermal analysis. J Thermal Anal Calor 109:1–5 Šesták J (2011) Citation records and some forgotten anniversary in thermal analysis. J Thermal Anal Calor 109:1–5
49.
Zurück zum Zitat Holba P, Šesták J (2015) Heat inertia and its role in thermal analysis. J Thermal Anal Calor 121:303–307CrossRef Holba P, Šesták J (2015) Heat inertia and its role in thermal analysis. J Thermal Anal Calor 121:303–307CrossRef
50.
Zurück zum Zitat Svoboda H, Šesták J. (1974) A new approach to DTA calibration by predetermined amount of Joule heat via rectangular pulses. In Thermal Analysis (Buzas I, ed), Proc. 4th ICTA, Akademia Kiado, Budapest, pp 726–731 Svoboda H, Šesták J. (1974) A new approach to DTA calibration by predetermined amount of Joule heat via rectangular pulses. In Thermal Analysis (Buzas I, ed), Proc. 4th ICTA, Akademia Kiado, Budapest, pp 726–731
51.
Zurück zum Zitat Svoboda H, Šesták J. (1973) Use of rectangular and triangular heat pulses in DTA analysis. In TERMANAL—Proc. 9th TA Conf. at High Tatras, Publ House SVŠT, Bratislava, pp 12–17 (in Czech) Svoboda H, Šesták J. (1973) Use of rectangular and triangular heat pulses in DTA analysis. In TERMANAL—Proc. 9th TA Conf. at High Tatras, Publ House SVŠT, Bratislava, pp 12–17 (in Czech)
52.
Zurück zum Zitat Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Chao-Rui Li, Tang TB, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta 355: 125–143; and Vyazovkin S, Burnham AK, Criado JM., Pérez-Maqueda LA., Popescu C, Sbirrazzuoli N. (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta; 520:1–19 Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Chao-Rui Li, Tang TB, Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta 355: 125–143; and Vyazovkin S, Burnham AK, Criado JM., Pérez-Maqueda LA., Popescu C, Sbirrazzuoli N. (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta; 520:1–19
53.
Zurück zum Zitat Holba P, Šesták J, Sedmidubský D (2013) Heat transfer and phase transition at DTA experiments. Chapter 5 in Thermal analysis of Micro-, nano- and non-crystalline materials, Šesták J, Šimon P (eds), Springer, Berlin, pp 99–134 (ISBN 978 90 481 3149 5) Holba P, Šesták J, Sedmidubský D (2013) Heat transfer and phase transition at DTA experiments. Chapter 5 in Thermal analysis of Micro-, nano- and non-crystalline materials, Šesták J, Šimon P (eds), Springer, Berlin, pp 99–134 (ISBN 978 90 481 3149 5)
54.
Zurück zum Zitat Smyth HT (1951) Temperature distribution during mineral inversion and its significance in DTA. J Am Cer Soc 34:221–224CrossRef Smyth HT (1951) Temperature distribution during mineral inversion and its significance in DTA. J Am Cer Soc 34:221–224CrossRef
55.
Zurück zum Zitat Barret P, Boumetain L (1961) Etude de la propagation dune reaction de dissociation thermique dans un systeme chmique conprenant une phase gazeuse at deux phases solides finement divisem. Bull Soc Chim France. 576 Barret P, Boumetain L (1961) Etude de la propagation dune reaction de dissociation thermique dans un systeme chmique conprenant une phase gazeuse at deux phases solides finement divisem. Bull Soc Chim France. 576
56.
Zurück zum Zitat Proks I (1961) Influence of rate of temperature increase on the gradient quantities important for the evaluation of DTA curves. Silikáty 5:114 (in Czech) Proks I (1961) Influence of rate of temperature increase on the gradient quantities important for the evaluation of DTA curves. Silikáty 5:114 (in Czech)
57.
Zurück zum Zitat Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M (2014) Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta 589:37–46CrossRef Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M (2014) Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta 589:37–46CrossRef
58.
Zurück zum Zitat Lyon RE, Safronova N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample centered response in non-isothermal analysis. Thermochim Acta 545:82–89CrossRef Lyon RE, Safronova N, Senese J, Stoliarov SI (2012) Thermokinetic model of sample centered response in non-isothermal analysis. Thermochim Acta 545:82–89CrossRef
59.
Zurück zum Zitat Mareš JJ. Šesták J, Hubík P (2011) Transport constitutive relations, quantum diffusion and periodic reactions. Chapter 14 in book: glassy, amorphous and nano-crystalline materials. In: Šesták J, Mareš JJ, Hubík P, eds, Springer, Berlin, pp 227–244 Mareš JJ. Šesták J, Hubík P (2011) Transport constitutive relations, quantum diffusion and periodic reactions. Chapter 14 in book: glassy, amorphous and nano-crystalline materials. In: Šesták J, Mareš JJ, Hubík P, eds, Springer, Berlin, pp 227–244
60.
Zurück zum Zitat Koga N, Šesták J (1991) Kinetic compensation effect as a mathematical consequence of the exponential rate constant. Thermochim. Acta 182: 201; and Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermo-analytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–10 Koga N, Šesták J (1991) Kinetic compensation effect as a mathematical consequence of the exponential rate constant. Thermochim. Acta 182: 201; and Koga N (1994) A review of the mutual dependence of Arrhenius parameters evaluated by the thermo-analytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta 244:1–10
61.
Zurück zum Zitat Roura P, Farjas J (2009) Analytical solution for the Kissinger equation. J Mater Res 24:3095–3098CrossRef Roura P, Farjas J (2009) Analytical solution for the Kissinger equation. J Mater Res 24:3095–3098CrossRef
62.
Zurück zum Zitat Koga N, Šesták J, Šimon P (2013) Some fundamental and historical aspects of phenomenological kinetics in the solid state studies by thermal analysis. Chapter 1 in book: Šesták J, Šimon P (eds) Thermal analysis of micro-, nano and non-crystalline materials, Springer, Dordrecht, pp 1–28 (ISBN 978-90-481-3149-5) Koga N, Šesták J, Šimon P (2013) Some fundamental and historical aspects of phenomenological kinetics in the solid state studies by thermal analysis. Chapter 1 in book: Šesták J, Šimon P (eds) Thermal analysis of micro-, nano and non-crystalline materials, Springer, Dordrecht, pp 1–28 (ISBN 978-90-481-3149-5)
63.
Zurück zum Zitat Šesták J (1966) Errors and interdependence of kinetic data obtained from TG curves at increasing temperature. Talanta 13:567CrossRef Šesták J (1966) Errors and interdependence of kinetic data obtained from TG curves at increasing temperature. Talanta 13:567CrossRef
64.
Zurück zum Zitat Holba P, Šesták J (1972) Kinetics with regard to the equilibrium of processes studied by non-Isothermal techniques, Zeit Physik Chem N.F. 80:1–20 Holba P, Šesták J (1972) Kinetics with regard to the equilibrium of processes studied by non-Isothermal techniques, Zeit Physik Chem N.F. 80:1–20
65.
Zurück zum Zitat Holba P (2010) Equilibrium background at heating under conditions of controlled atmosphere. In: Proc. 62nd Meeting of Czech and Slovak Chemical Associations, Pardubice University Press; and (2012) Chemické Listy 104:606–609 (both in Czech) Holba P (2010) Equilibrium background at heating under conditions of controlled atmosphere. In: Proc. 62nd Meeting of Czech and Slovak Chemical Associations, Pardubice University Press; and (2012) Chemické Listy 104:606–609 (both in Czech)
66.
Zurück zum Zitat Holba P (2013) Equilibrium background of processes initiated by heating and the Ehrenfest classification of phase transitions, Chapter 2 in book: Thermal analysis of micro-, nano- and non-crystalline materials (Šesták J, Šimon P, eds), Springer Berlin, pp. 29–52 (ISBN 978-90-481-3149-5); and (2015) Ehrenfest equations for calorimetry and dilatometry. J Therm Anal Calorim 120:175–181 Holba P (2013) Equilibrium background of processes initiated by heating and the Ehrenfest classification of phase transitions, Chapter 2 in book: Thermal analysis of micro-, nano- and non-crystalline materials (Šesták J, Šimon P, eds), Springer Berlin, pp. 29–52 (ISBN 978-90-481-3149-5); and (2015) Ehrenfest equations for calorimetry and dilatometry. J Therm Anal Calorim 120:175–181
67.
Zurück zum Zitat Holba P (2017) Temperature dependence of activation energy of endothermic processes and related imperfections of non-isothermal kinetic evaluations. J Therm Anal Calorim. doi:10.1007/s10973-017-6088-8 Holba P (2017) Temperature dependence of activation energy of endothermic processes and related imperfections of non-isothermal kinetic evaluations. J Therm Anal Calorim. doi:10.​1007/​s10973-017-6088-8
68.
Zurück zum Zitat Šesták J, Holba P (2017) Quo Vadis of nonisothermal kinetics (in the course of preparation); and (2016) Piloyan method to determine the activation energy from DTA is defective in addition to other methods which do not take into account the thermal inertia. J Anal Bioanal Tech. doi:10.4172/2155-9872.1000331) Šesták J, Holba P (2017) Quo Vadis of nonisothermal kinetics (in the course of preparation); and (2016) Piloyan method to determine the activation energy from DTA is defective in addition to other methods which do not take into account the thermal inertia. J Anal Bioanal Tech. doi:10.​4172/​2155-9872.​1000331)
69.
Zurück zum Zitat Šimon P (2005) Single-step kinetic approximation employing non-Arrhenius T-functions. J. Thermal Anal. Calor. 79: 703; and Šimon P, Dubaj T, Cibulková Z (2015) Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurements. J Therm Anal Calorim, 120: 231–238; and Dubaj T, Cibulková Z, Šimon P (2015) An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression. J Comput Chem 36:392–398 Šimon P (2005) Single-step kinetic approximation employing non-Arrhenius T-functions. J. Thermal Anal. Calor. 79: 703; and Šimon P, Dubaj T, Cibulková Z (2015) Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurements. J Therm Anal Calorim, 120: 231–238; and Dubaj T, Cibulková Z, Šimon P (2015) An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression. J Comput Chem 36:392–398
70.
Zurück zum Zitat Maciejewski M (2000) Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project - the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta 355:145–154 Maciejewski M (2000) Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project - the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta 355:145–154
71.
Zurück zum Zitat Maitra S, Chakrabarty N, Pramanik J (2008) Decomposition kinetics of alkaline earth carbonates by integral approximation method. Cerâmica 54:268–272 Maitra S, Chakrabarty N, Pramanik J (2008) Decomposition kinetics of alkaline earth carbonates by integral approximation method. Cerâmica 54:268–272
72.
Zurück zum Zitat Bale CW, Béliste E, Chartrand P, Decterov SA, Eriksson G, Hach K (2009) Thermochemical software and databases; recent developments. CALPHAD 33:295–31; and (2013) www.factsage.com Bale CW, Béliste E, Chartrand P, Decterov SA, Eriksson G, Hach K (2009) Thermochemical software and databases; recent developments. CALPHAD 33:295–31; and (2013) www.​factsage.​com
73.
Zurück zum Zitat Šesták J (2016) Measuring, “hotness”, should the sensor’s readings for rapid temperature changes be named “tempericity”? J Therm Anal Calorim 125:991–999 Šesták J (2016) Measuring, “hotness”, should the sensor’s readings for rapid temperature changes be named “tempericity”? J Therm Anal Calorim 125:991–999
74.
Zurück zum Zitat Holba P (2016) Šesták’s proposal of term “tempericity” for non-equilibrium temperature and modified Tykodi´s thermal science classification with regards to methods of thermal analysis. J Therm Anal Calorim. doi:10.1007/s10973-016-5659-4 Holba P (2016) Šesták’s proposal of term “tempericity” for non-equilibrium temperature and modified Tykodi´s thermal science classification with regards to methods of thermal analysis. J Therm Anal Calorim. doi:10.​1007/​s10973-016-5659-4
75.
Zurück zum Zitat Holba P (1994) Thermodynamics and ceramic systems. Chapter in book: structure and properties of ceramic materials (Koller A, eds), Elsevier, Amsterdam, pp. 17–113; and (2017) book: Thermal analysis and thermodynamics of phases, OPS Plzeň, uncompleted and thus never published Holba P (1994) Thermodynamics and ceramic systems. Chapter in book: structure and properties of ceramic materials (Koller A, eds), Elsevier, Amsterdam, pp. 17–113; and (2017) book: Thermal analysis and thermodynamics of phases, OPS Plzeň, uncompleted and thus never published
76.
Zurück zum Zitat ICTAC Kinetics Committee Recommendations (2014) Collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23 ICTAC Kinetics Committee Recommendations (2014) Collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23
Metadaten
Titel
The Role of Heat Transfer and Analysis Ensuing Heat Inertia in Thermal Measurements and Its Impact to Nonisothermal Kinetics
verfasst von
Pavel Holba
Jaroslav Šesták
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-45899-1_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.