Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.10.2014

The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations

verfasst von: Amitabha Bose, Jorge Golowasch, Yinzheng Guan, Farzan Nadim

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuronal oscillatory activity is generated by a combination of ionic currents, including at least one inward regenerative current that brings the cell towards depolarized voltages and one outward current that repolarizes the cell. Such currents have traditionally been assumed to require voltage-dependence. Here we test the hypothesis that the voltage dependence of the regenerative inward current is not necessary for generating oscillations. Instead, a current I NL that is linear in the biological voltage range and has negative conductance is sufficient to produce regenerative activity. The current I NL can be considered a linear approximation to the negative-conductance region of the current–voltage relationship of a regenerative inward current. Using a simple conductance-based model, we show that I NL , in conjunction with a voltage-gated, non-inactivating outward current, can generate oscillatory activity. We use phase-plane and bifurcation analyses to uncover a rich variety of behaviors as the conductance of I NL is varied, and show that oscillations emerge as a result of destabilization of the resting state of the model neuron. The model shows the need for well-defined relationships between the inward and outward current conductances, as well as their reversal potentials, in order to produce stable oscillatory activity. Our analysis predicts that a hyperpolarization-activated inward current can play a role in stabilizing oscillatory activity by preventing swings to very negative voltages, which is consistent with what is recorded in biological neurons in general. We confirm this prediction of the model experimentally in neurons from the crab stomatogastric ganglion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. Journal of Neuroscience, 30(25), 8637–8649.PubMedCrossRef Ball, J. M., Franklin, C. C., Tobin, A. E., Schulz, D. J., & Nair, S. S. (2010). Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. Journal of Neuroscience, 30(25), 8637–8649.PubMedCrossRef
Zurück zum Zitat Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. Journal of Neuroscience, 22(19), 8691–8704.PubMed Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. Journal of Neuroscience, 22(19), 8691–8704.PubMed
Zurück zum Zitat Blethyn, K. L., Hughes, S. W., Toth, T. I., Cope, D. W., & Crunelli, V. (2006). Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. Journal of Neuroscience, 26(9), 2474–2486.PubMedCrossRef Blethyn, K. L., Hughes, S. W., Toth, T. I., Cope, D. W., & Crunelli, V. (2006). Neuronal basis of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. Journal of Neuroscience, 26(9), 2474–2486.PubMedCrossRef
Zurück zum Zitat Brickley, S. G., Aller, M. I., Sandu, C., Veale, E. L., Alder, F. G., Sambi, H., et al. (2007). TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. Journal of Neuroscience, 27(35), 9329–9340.PubMedCrossRef Brickley, S. G., Aller, M. I., Sandu, C., Veale, E. L., Alder, F. G., Sambi, H., et al. (2007). TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. Journal of Neuroscience, 27(35), 9329–9340.PubMedCrossRef
Zurück zum Zitat Cantrell, A. R., & Catterall, W. A. (2001). Neuromodulation of Na + channels: an unexpected form of cellular plasticity. Nature Reviews Neuroscience, 2(6), 397–407.PubMedCrossRef Cantrell, A. R., & Catterall, W. A. (2001). Neuromodulation of Na + channels: an unexpected form of cellular plasticity. Nature Reviews Neuroscience, 2(6), 397–407.PubMedCrossRef
Zurück zum Zitat Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed
Zurück zum Zitat Del Negro, C. A., Koshiya, N., Butera, R. J., Jr., & Smith, J. C. (2002). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88(5), 2242–2250.PubMedCrossRef Del Negro, C. A., Koshiya, N., Butera, R. J., Jr., & Smith, J. C. (2002). Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. Journal of Neurophysiology, 88(5), 2242–2250.PubMedCrossRef
Zurück zum Zitat Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2(6), 515–520.PubMedCrossRef Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neuroscience, 2(6), 515–520.PubMedCrossRef
Zurück zum Zitat DiFrancesco, D. (2005). Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Current Medical Research and Opinion, 21(7), 1115–1122.PubMedCrossRef DiFrancesco, D. (2005). Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Current Medical Research and Opinion, 21(7), 1115–1122.PubMedCrossRef
Zurück zum Zitat Dunmyre, J. R., Del Negro, C. A., & Rubin, J. E. (2011). Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. Journal of Computational Neuroscience, 31(2), 305–328.PubMedCentralPubMedCrossRef Dunmyre, J. R., Del Negro, C. A., & Rubin, J. E. (2011). Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. Journal of Computational Neuroscience, 31(2), 305–328.PubMedCentralPubMedCrossRef
Zurück zum Zitat Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.PubMed Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229–5238.PubMed
Zurück zum Zitat Golowasch, J., & Marder, E. (1992a). Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. Journal of Neurophysiology, 67(2), 318–331.PubMed Golowasch, J., & Marder, E. (1992a). Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. Journal of Neurophysiology, 67(2), 318–331.PubMed
Zurück zum Zitat Golowasch, J., & Marder, E. (1992b). Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. Journal of Neuroscience, 12(3), 810–817.PubMed Golowasch, J., & Marder, E. (1992b). Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. Journal of Neuroscience, 12(3), 810–817.PubMed
Zurück zum Zitat Haedo, R. J., & Golowasch, J. (2006). Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. Journal of Neurophysiology, 96(4), 1860–1876.PubMedCentralPubMedCrossRef Haedo, R. J., & Golowasch, J. (2006). Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons. Journal of Neurophysiology, 96(4), 1860–1876.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current–voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424–448.PubMedCentralPubMed Hodgkin, A. L., Huxley, A. F., & Katz, B. (1952). Measurement of current–voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 116(4), 424–448.PubMedCentralPubMed
Zurück zum Zitat Hooper, S. L., & Marder, E. (1987). Modulation of the lobster pyloric rhythm by the peptide proctolin. Journal of Neuroscience, 7(7), 2097–2112.PubMed Hooper, S. L., & Marder, E. (1987). Modulation of the lobster pyloric rhythm by the peptide proctolin. Journal of Neuroscience, 7(7), 2097–2112.PubMed
Zurück zum Zitat Jahnsen, H., & Llinas, R. (1984). Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. The Journal of Physiology, 349, 227–247.PubMedCentralPubMed Jahnsen, H., & Llinas, R. (1984). Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. The Journal of Physiology, 349, 227–247.PubMedCentralPubMed
Zurück zum Zitat Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.PubMedCentralPubMedCrossRef Khorkova, O., & Golowasch, J. (2007). Neuromodulators, not activity, control coordinated expression of ionic currents. Journal of Neuroscience, 27(32), 8709–8718.PubMedCentralPubMedCrossRef
Zurück zum Zitat Koizumi, H., & Smith, J. C. (2008). Persistent Na+ and K+ −dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. Journal of Neuroscience, 28(7), 1773–1785.PubMedCrossRef Koizumi, H., & Smith, J. C. (2008). Persistent Na+ and K+ −dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. Journal of Neuroscience, 28(7), 1773–1785.PubMedCrossRef
Zurück zum Zitat Kramer, R. H., & Zucker, R. S. (1985). Calcium-dependent inward current in Aplysia bursting pace-maker neurones. The Journal of Physiology, 362, 107–130.PubMedCentralPubMed Kramer, R. H., & Zucker, R. S. (1985). Calcium-dependent inward current in Aplysia bursting pace-maker neurones. The Journal of Physiology, 362, 107–130.PubMedCentralPubMed
Zurück zum Zitat Kuznetsov, I. U. A. (2004). Elements of applied bifurcation theory (3rd ed., Applied mathematical sciences, Vol. 112). New York: Springer. Kuznetsov, I. U. A. (2004). Elements of applied bifurcation theory (3rd ed., Applied mathematical sciences, Vol. 112). New York: Springer.
Zurück zum Zitat Lu, T. Z., & Feng, Z. P. (2012). NALCN: a regulator of pacemaker activity. Molecular Neurobiology, 45(3), 415–423.PubMedCrossRef Lu, T. Z., & Feng, Z. P. (2012). NALCN: a regulator of pacemaker activity. Molecular Neurobiology, 45(3), 415–423.PubMedCrossRef
Zurück zum Zitat McCormick, D. A., & Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience, 20, 185–215.PubMedCrossRef McCormick, D. A., & Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience, 20, 185–215.PubMedCrossRef
Zurück zum Zitat McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–1400.PubMed McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68(4), 1384–1400.PubMed
Zurück zum Zitat Pang, D. S., Robledo, C. J., Carr, D. R., Gent, T. C., Vyssotski, A. L., Caley, A., et al. (2009). An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17546–17551.PubMedCentralPubMedCrossRef Pang, D. S., Robledo, C. J., Carr, D. R., Gent, T. C., Vyssotski, A. L., Caley, A., et al. (2009). An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17546–17551.PubMedCentralPubMedCrossRef
Zurück zum Zitat Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.PubMedCrossRef Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352.PubMedCrossRef
Zurück zum Zitat Rekling, J. C., Funk, G. D., Bayliss, D. A., Dong, X. W., & Feldman, J. L. (2000). Synaptic control of motoneuronal excitability. Physiological Reviews, 80(2), 767–852.PubMed Rekling, J. C., Funk, G. D., Bayliss, D. A., Dong, X. W., & Feldman, J. L. (2000). Synaptic control of motoneuronal excitability. Physiological Reviews, 80(2), 767–852.PubMed
Zurück zum Zitat Robinson, R. B., & Siegelbaum, S. A. (2003). Hyperpolarization-activaterd cation currents: from molecules to physiological function. Annual Review of Physiology, 65, 453–480.PubMedCrossRef Robinson, R. B., & Siegelbaum, S. A. (2003). Hyperpolarization-activaterd cation currents: from molecules to physiological function. Annual Review of Physiology, 65, 453–480.PubMedCrossRef
Zurück zum Zitat Selverston, A. I., Russell, D. F., & Miller, J. P. (1976). The stomatogastric nervous system: structure and function of a small neural network. Progress in Neurobiology, 7(3), 215–290.PubMedCrossRef Selverston, A. I., Russell, D. F., & Miller, J. P. (1976). The stomatogastric nervous system: structure and function of a small neural network. Progress in Neurobiology, 7(3), 215–290.PubMedCrossRef
Zurück zum Zitat Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69(3), 992–995.PubMed Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69(3), 992–995.PubMed
Zurück zum Zitat Swensen, A. M., & Bean, B. P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.PubMedCrossRef Swensen, A. M., & Bean, B. P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509–3520.PubMedCrossRef
Zurück zum Zitat Swensen, A. M., & Marder, E. (2000). Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. Journal of Neuroscience, 20(18), 6752–6759.PubMed Swensen, A. M., & Marder, E. (2000). Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. Journal of Neuroscience, 20(18), 6752–6759.PubMed
Zurück zum Zitat Tobin, A. E., Van Hooser, S. D., & Calabrese, R. L. (2006). Creation and reduction of a morphologically detailed model of a leech heart interneuron. Journal of Neurophysiology, 96(4), 2107–2120.PubMedCentralPubMedCrossRef Tobin, A. E., Van Hooser, S. D., & Calabrese, R. L. (2006). Creation and reduction of a morphologically detailed model of a leech heart interneuron. Journal of Neurophysiology, 96(4), 2107–2120.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tryba, A. K., Pena, F., & Ramirez, J. M. (2006). Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. Journal of Neuroscience, 26(10), 2623–2634.PubMedCrossRef Tryba, A. K., Pena, F., & Ramirez, J. M. (2006). Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. Journal of Neuroscience, 26(10), 2623–2634.PubMedCrossRef
Zurück zum Zitat Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264(5161), 974–977.PubMedCrossRef Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264(5161), 974–977.PubMedCrossRef
Zurück zum Zitat Zhao, S., Golowasch, J., & Nadim, F. (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4, 21.PubMedCentralPubMed Zhao, S., Golowasch, J., & Nadim, F. (2010). Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current. Frontiers in Behavioral Neuroscience, 4, 21.PubMedCentralPubMed
Metadaten
Titel
The role of linear and voltage-dependent ionic currents in the generation of slow wave oscillations
verfasst von
Amitabha Bose
Jorge Golowasch
Yinzheng Guan
Farzan Nadim
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0498-4

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe

Premium Partner