Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 11/2012

01.11.2012

The Role of Local Microstructure on Small Fatigue Crack Propagation in an α + β Titanium Alloy, Ti-6Al-2Sn-4Zr-6Mo

verfasst von: C. J. Szczepanski, S. K. Jha, J. M. Larsen, J. W. Jones

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 11/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructural origins of the variability in fatigue lifetime observed in the high- and very-high-cycle fatigue regimes in titanium alloys were explored by examining the role of microstructural heterogeneity (neighborhoods of grains with similar crystallographic orientations or microtexture) on the initiation and early growth of fatigue cracks in Ti-6246. Ultrasonic fatigue of focused ion beam (FIB) micronotched samples was used to investigate long lifetime (107 to 109) behavior for two microstructural conditions: one with microtexture and one without microtexture. For specimens containing notches of nominally 20 μm in length, fatigue crack initiation in the microtextured material was most likely to occur from notches placed in neighborhoods with a microtexture favorably oriented for easy basal slip. Initiation lifetimes in the untextured material with similar sized notches were, on average, slightly greater than those for the microtextured condition. In both materials, the crack-initiation lifetime from micronotches of length 2c > 20 μm was a very small fraction (<1 pct) of the measured fatigue lifetime for unnotched specimens. Furthermore, in the microtextured condition, small fatigue crack propagation rates did not correlate with the microtextured regions and did not statistically differ from average small crack growth rates in the untextured material. As the micronotch size was reduced below 20 μm, fatigue crack initiation was controlled by microstructure rather than by FIB-machined defects. Finally, predictions of the fraction of life consumed in small and long fatigue crack growth from preexisting cracks nominally equivalent in size to the micronotches was compared with the measured fatigue life of unnotched specimens. The predicted range of lifetimes when factoring in the experimentally observed variability in small fatigue crack growth, only accounted for 0.1 pct of the observed fatigue lifetime variability. These findings indicate that in the high-and very-high-cycle fatigue regimes, fatigue life is dominated by crack initiation and that the variation in the initiation lifetime is responsible for the observed variation in total fatigue life.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.J. Szczepanski, S.K. Jha, J.M. Larsen, and J.W. Jones: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2841–51.CrossRef C.J. Szczepanski, S.K. Jha, J.M. Larsen, and J.W. Jones: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2841–51.CrossRef
2.
Zurück zum Zitat C.J. Szczepanski: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 2008. C.J. Szczepanski: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 2008.
3.
Zurück zum Zitat M.G. Glavicic, B.B. Bartha, S.K. Jha, and C.J. Szczepanski: Mater. Sci. Eng. A, 2009, vols. A513–14, pp. 325–28. M.G. Glavicic, B.B. Bartha, S.K. Jha, and C.J. Szczepanski: Mater. Sci. Eng. A, 2009, vols. A513–14, pp. 325–28.
5.
Zurück zum Zitat G. Lütjering: Mater. Sci. Eng. A, 1998, vol. A243, pp. 32–45. G. Lütjering: Mater. Sci. Eng. A, 1998, vol. A243, pp. 32–45.
6.
Zurück zum Zitat G. Luetjering and M. Peters: EPRI CS 2933. Project 1266-1. Final Report – Electric Power Research Institute, Palo Alto, CA, 1983. G. Luetjering and M. Peters: EPRI CS 2933. Project 1266-1. Final Report – Electric Power Research Institute, Palo Alto, CA, 1983.
7.
Zurück zum Zitat F. Larson and A. Zarkades: MCIC Report - MCIC·74-20 – Metals and Ceramics Information Center, Columbus, OH, 1974. F. Larson and A. Zarkades: MCIC Report - MCIC·74-20 – Metals and Ceramics Information Center, Columbus, OH, 1974.
8.
Zurück zum Zitat S.K. Jha, M.J. Caton, and J.M. Larsen: Mater. Sci. Eng. A, 2007, vols. A468–70, pp. 23–32. S.K. Jha, M.J. Caton, and J.M. Larsen: Mater. Sci. Eng. A, 2007, vols. A468–70, pp. 23–32.
9.
Zurück zum Zitat L. Christodoulou and J.M. Larsen: JOM, 2004, pp. 15–19. L. Christodoulou and J.M. Larsen: JOM, 2004, pp. 15–19.
10.
Zurück zum Zitat S.K. Jha, J.M. Larsen, A.H. Rosenberger, and G.A. Hartman: Scripta Mater., 2003, vol. 48, pp. 1637–42.CrossRef S.K. Jha, J.M. Larsen, A.H. Rosenberger, and G.A. Hartman: Scripta Mater., 2003, vol. 48, pp. 1637–42.CrossRef
11.
Zurück zum Zitat D.L. Davidson, R.G. Tryon, M. Oja, R. Matthews, and K.S.R. Chandran: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2214–25.CrossRef D.L. Davidson, R.G. Tryon, M. Oja, R. Matthews, and K.S.R. Chandran: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2214–25.CrossRef
12.
Zurück zum Zitat V. Sinha, J.E. Spowart, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37A, pp.1507–18.CrossRef V. Sinha, J.E. Spowart, M.J. Mills, and J.C. Williams: Metall. Mater. Trans. A, 2006, vol. 37A, pp.1507–18.CrossRef
13.
Zurück zum Zitat K. LeBiavant, S. Pommier, and C. Prioul: Fatig. Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 527–45.CrossRef K. LeBiavant, S. Pommier, and C. Prioul: Fatig. Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 527–45.CrossRef
14.
Zurück zum Zitat F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2008, vol. 56, pp. 3951–62.CrossRef F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2008, vol. 56, pp. 3951–62.CrossRef
15.
Zurück zum Zitat I. Bantounas, D. Dye, and T.C. Lindley: Acta Mater., 2009, vol. 57, pp. 3584–95.CrossRef I. Bantounas, D. Dye, and T.C. Lindley: Acta Mater., 2009, vol. 57, pp. 3584–95.CrossRef
16.
Zurück zum Zitat M. Brogdon and A.H. Rosenberger: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 583–88. M. Brogdon and A.H. Rosenberger: Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G Fahrmann, E.S. Huron, and S.A. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 583–88.
17.
Zurück zum Zitat S.K. Jha and J.M. Larsen: VHCF4, J.E. Allison, J.W. Jones, J.M. Larsen, and R. Ritchie, eds., TMS, Warrendale, PA, 2007, pp. 385–96. S.K. Jha and J.M. Larsen: VHCF4, J.E. Allison, J.W. Jones, J.M. Larsen, and R. Ritchie, eds., TMS, Warrendale, PA, 2007, pp. 385–96.
18.
Zurück zum Zitat M. Peters, A. Gysler, and G. Lutjering: Metall. Trans. A, 1984, vol. 15A, pp. 1597–1605. M. Peters, A. Gysler, and G. Lutjering: Metall. Trans. A, 1984, vol. 15A, pp. 1597–1605.
20.
Zurück zum Zitat A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, and B. Yamrom: Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Materials, Birmingham, UK, 1996, pp.1116–23. A.P. Woodfield, M.D. Gorman, R.R. Corderman, J.A. Sutliff, and B. Yamrom: Titanium ’95: Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Materials, Birmingham, UK, 1996, pp.1116–23.
21.
Zurück zum Zitat I. Bantounas, T.C. Lindley, D. Rugg, and D. Dye: Acta Mater., 2007, vol. 55, pp. 5655–65.CrossRef I. Bantounas, T.C. Lindley, D. Rugg, and D. Dye: Acta Mater., 2007, vol. 55, pp. 5655–65.CrossRef
22.
Zurück zum Zitat T. Zhai, A.J. Wilkinson, and J.W. Martin: Acta Mater., 2000, vol. 48, pp. 4917–27.CrossRef T. Zhai, A.J. Wilkinson, and J.W. Martin: Acta Mater., 2000, vol. 48, pp. 4917–27.CrossRef
23.
Zurück zum Zitat T. Zhai: Proc. from Materials Solutions Conf., 2001, ASM International, Indianapolis, IN, pp. 83–91. T. Zhai: Proc. from Materials Solutions Conf., 2001, ASM International, Indianapolis, IN, pp. 83–91.
24.
Zurück zum Zitat M. Marx, W. Schaef, and H. Vehoff: Proced. Eng., 2010, vol. 2, pp. 163–71.CrossRef M. Marx, W. Schaef, and H. Vehoff: Proced. Eng., 2010, vol. 2, pp. 163–71.CrossRef
25.
Zurück zum Zitat U. Krupp, W. Floer, J. Lei, Y. Hu, H. Christ, A. Schick, and C. Fritzen: Philos. Mag. A, 2002, vol. 82, pp. 3321–32. U. Krupp, W. Floer, J. Lei, Y. Hu, H. Christ, A. Schick, and C. Fritzen: Philos. Mag. A, 2002, vol. 82, pp. 3321–32.
26.
Zurück zum Zitat Y. Saleh and H. Margolin: Metall. Trans. A, 1983, vol. 14A, pp. 1481–86. Y. Saleh and H. Margolin: Metall. Trans. A, 1983, vol. 14A, pp. 1481–86.
27.
Zurück zum Zitat E.B. Shell and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3219–29.CrossRef E.B. Shell and S.L. Semiatin: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3219–29.CrossRef
28.
Zurück zum Zitat T.R. Bieler and S.L. Semiatin: Int. J. Plast., 2002, vol. 18, pp. 1165–89.CrossRef T.R. Bieler and S.L. Semiatin: Int. J. Plast., 2002, vol. 18, pp. 1165–89.CrossRef
29.
Zurück zum Zitat J.M. Larsen, J.R. Jira, and K.S. Ravichandran: STP 1149, ASTM, 1992, Philadelphia, PA, pp. 57–80. J.M. Larsen, J.R. Jira, and K.S. Ravichandran: STP 1149, ASTM, 1992, Philadelphia, PA, pp. 57–80.
30.
Zurück zum Zitat Q. Feng, Y. Picard, H. Liu, S. Yalisove, G. Mourou, and T.M. Pollock: Scripta Mater., 2005, vol. 53, pp. 511–16.CrossRef Q. Feng, Y. Picard, H. Liu, S. Yalisove, G. Mourou, and T.M. Pollock: Scripta Mater., 2005, vol. 53, pp. 511–16.CrossRef
31.
Zurück zum Zitat A. Shyam, C. Torbet, S.K. Jha, J. Larsen, M. Caton, C. Szczepanski, T.M. Pollock, and J.W. Jones: Superalloys 2004, K. Green, T.M. Pollock, H. Harada, T. Howson, R. Reed, J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, pp. 259–68. A. Shyam, C. Torbet, S.K. Jha, J. Larsen, M. Caton, C. Szczepanski, T.M. Pollock, and J.W. Jones: Superalloys 2004, K. Green, T.M. Pollock, H. Harada, T. Howson, R. Reed, J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, pp. 259–68.
32.
Zurück zum Zitat X. Zhu: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 2007. X. Zhu: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 2007.
33.
Zurück zum Zitat J. Orloff, M. Utlaut, and L. Swanson: High Resolution Focused Ion Beams: FIB and its Applications, Kluwer Academic/Plenum Publishers, New York, NY, 2003. J. Orloff, M. Utlaut, and L. Swanson: High Resolution Focused Ion Beams: FIB and its Applications, Kluwer Academic/Plenum Publishers, New York, NY, 2003.
34.
Zurück zum Zitat J. Newman and I. Raju: Eng. Fract. Mech., 1981, vol. 15, pp. 185–92.CrossRef J. Newman and I. Raju: Eng. Fract. Mech., 1981, vol. 15, pp. 185–92.CrossRef
35.
Zurück zum Zitat K.S. Chan and J. Lankford: Acta Metall., 1988, vol. 36, pp. 193–206.CrossRef K.S. Chan and J. Lankford: Acta Metall., 1988, vol. 36, pp. 193–206.CrossRef
36.
Zurück zum Zitat S. Suresh and R.O. Ritchie: Int. Mater. Rev., 1984, vol. 29, pp. 445–76. S. Suresh and R.O. Ritchie: Int. Mater. Rev., 1984, vol. 29, pp. 445–76.
37.
Zurück zum Zitat C.J. Szczepanski, A. Shyam, S.K. Jha, J.M. Larsen, C.J. Torbet, S.J. Johnson, and J.W. Jones: Materials Damage Prognosis, J.M. Larsen, L. Christodoulou, J.R. Calcaterra, M.L. Dent, M.M. Deriso, W.J. Hardman, J.W. Jones, and S.M. Russ, eds., TMS, Warrendale, PA, 2005, pp. 315–20. C.J. Szczepanski, A. Shyam, S.K. Jha, J.M. Larsen, C.J. Torbet, S.J. Johnson, and J.W. Jones: Materials Damage Prognosis, J.M. Larsen, L. Christodoulou, J.R. Calcaterra, M.L. Dent, M.M. Deriso, W.J. Hardman, J.W. Jones, and S.M. Russ, eds., TMS, Warrendale, PA, 2005, pp. 315–20.
38.
Zurück zum Zitat J.M. Larsen: unpublished research, 1992. J.M. Larsen: unpublished research, 1992.
Metadaten
Titel
The Role of Local Microstructure on Small Fatigue Crack Propagation in an α + β Titanium Alloy, Ti-6Al-2Sn-4Zr-6Mo
verfasst von
C. J. Szczepanski
S. K. Jha
J. M. Larsen
J. W. Jones
Publikationsdatum
01.11.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 11/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1228-z

Weitere Artikel der Ausgabe 11/2012

Metallurgical and Materials Transactions A 11/2012 Zur Ausgabe

Symposium: Approaches for Investigating Phase Transformations at the Atomic Scale

Foreword

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.