Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | THEORY OF METALS

The Role of Shear Waves in Electron–Phonon Drag in Potassium Crystals at Low Temperatures

verfasst von: I. I. Kuleev, I. G. Kuleev

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of anisotropy of elastic energy on the electron–phonon drag and thermoelectric phenomena in potassium crystals at low temperatures is investigated in this work. The standard theory of deformation potential is used for longitudinal components of elastic modes. The effect of shear waves on the drag thermoelectric power is taken into account. By comparing the results of calculating the thermoelectric power and lattice thermal conductivity with experimental data, the electron–phonon interaction constant for the shear components of vibrational modes is determined. It is an order of magnitude smaller than for the longitudinal components. It is shown that shear waves make a significant contribution to both the electron–phonon relaxation and the drag thermoelectric power. This contribution is from 28 to 40% of the total drag thermoelectric power for various samples and is four to six times higher than the contribution from longitudinal phonons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. I. Kuleev and I. G. Kuleev, “Phonon focusing and anisotropy of the lattice thermal conductivity of potassium crystals at low temperatures,” Phys. Met. Metallogr. 119, 1141–1147 (2018).CrossRef I. I. Kuleev and I. G. Kuleev, “Phonon focusing and anisotropy of the lattice thermal conductivity of potassium crystals at low temperatures,” Phys. Met. Metallogr. 119, 1141–1147 (2018).CrossRef
2.
Zurück zum Zitat I. I. Kuleev and I. G. Kuleev, “Role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower of potassium crystals at low temperatures,” J. Exp. Theor. Phys. 129, 46–58 (2019).CrossRef I. I. Kuleev and I. G. Kuleev, “Role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower of potassium crystals at low temperatures,” J. Exp. Theor. Phys. 129, 46–58 (2019).CrossRef
3.
Zurück zum Zitat I. I. Kuleev and I. G. Kuleev,” Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation,” J. Phys.: Condens. Matter 31, 375701(13 pp) (2019). I. I. Kuleev and I. G. Kuleev,” Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation,” J. Phys.: Condens. Matter 31, 375701(13 pp) (2019).
4.
Zurück zum Zitat I. I. Kuleev and I. G. Kuleev, “Effect of anisotropy of elastic energy on the electron–phonon drag and temperature dependences of thermal emf in potassium crystals at low temperatures,” Phys. Met. Metallogr. 120, 1033–1039 (2019).CrossRef I. I. Kuleev and I. G. Kuleev, “Effect of anisotropy of elastic energy on the electron–phonon drag and temperature dependences of thermal emf in potassium crystals at low temperatures,” Phys. Met. Metallogr. 120, 1033–1039 (2019).CrossRef
5.
Zurück zum Zitat I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Focusing of Phonons and Phonon Transport in Single Crystal Nanostructures, (Izdatel’stvo UMTs UPI, Yekaterinburg, 2018) [in Russian]. I. G. Kuleev, I. I. Kuleev, S. M. Bakharev, and V. V. Ustinov, Focusing of Phonons and Phonon Transport in Single Crystal Nanostructures, (Izdatel’stvo UMTs UPI, Yekaterinburg, 2018) [in Russian].
6.
Zurück zum Zitat D. K. C. MacDonald, W. B. Pearson and I. M. Templeton, “Thermo-electricity at low temperatures. VIII. Thermo-electricity of the alkali metals below 2 K,” Proc. R. Soc. London, Ser. A 256, 334–358 (1960).CrossRef D. K. C. MacDonald, W. B. Pearson and I. M. Templeton, “Thermo-electricity at low temperatures. VIII. Thermo-electricity of the alkali metals below 2 K,” Proc. R. Soc. London, Ser. A 256, 334–358 (1960).CrossRef
7.
Zurück zum Zitat A. M. Guenault and D. K. C. MacDonald, “Electron and phonon scattering thermoelectricity in potassium and alloys at very low temperatures,” Proc. R. Soc. London, Ser. A 264, 41–59 (1961).CrossRef A. M. Guenault and D. K. C. MacDonald, “Electron and phonon scattering thermoelectricity in potassium and alloys at very low temperatures,” Proc. R. Soc. London, Ser. A 264, 41–59 (1961).CrossRef
8.
Zurück zum Zitat M. R. Stinson, R. Fletcher, and C. R. Leavens, “Thermomagnetic and thermoelectric properties of potassium,” Phys. Rev. B 20, 3970–3990 (1979).CrossRef M. R. Stinson, R. Fletcher, and C. R. Leavens, “Thermomagnetic and thermoelectric properties of potassium,” Phys. Rev. B 20, 3970–3990 (1979).CrossRef
9.
Zurück zum Zitat R. Fletcher, “Scattering of phonons by dislocations in potassium,” Phys. Rev. B 36, 3042–3051 (1987).CrossRef R. Fletcher, “Scattering of phonons by dislocations in potassium,” Phys. Rev. B 36, 3042–3051 (1987).CrossRef
10.
Zurück zum Zitat F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum press, New York, 1976), p. 264.CrossRef F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum press, New York, 1976), p. 264.CrossRef
11.
Zurück zum Zitat J. M. Ziman, Electrons and Phonons. The Theory of Transport Phenomena in Solids (Oxford, 2001). J. M. Ziman, Electrons and Phonons. The Theory of Transport Phenomena in Solids (Oxford, 2001).
12.
Zurück zum Zitat F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, 1968). F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, 1968).
13.
Zurück zum Zitat J. M. Zyman, “The thermoelectric power of the alkali metals at low temperatures,” Philos. Mag. 4, 371–379 (1959).CrossRef J. M. Zyman, “The thermoelectric power of the alkali metals at low temperatures,” Philos. Mag. 4, 371–379 (1959).CrossRef
14.
Zurück zum Zitat C. Herring and E. Vogt, “Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering,” Phys. Rev. 101, 944–961 (1956).CrossRef C. Herring and E. Vogt, “Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering,” Phys. Rev. 101, 944–961 (1956).CrossRef
15.
Zurück zum Zitat P. Yu. M. Kardona, Fundamentals of Physics of Semiconductors (Fizmatlit, Moscow, 2002) [in Russian]. P. Yu. M. Kardona, Fundamentals of Physics of Semiconductors (Fizmatlit, Moscow, 2002) [in Russian].
16.
Zurück zum Zitat F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965). F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965).
17.
Zurück zum Zitat I. G. Kuleev and I. I. Kuleev, “Elastic waves in cubic crystals with positive or negative anisotropy of second-order elastic moduli,” Phys. Solid State 49, no. 3, 437–444 (2007).CrossRef I. G. Kuleev and I. I. Kuleev, “Elastic waves in cubic crystals with positive or negative anisotropy of second-order elastic moduli,” Phys. Solid State 49, no. 3, 437–444 (2007).CrossRef
18.
Zurück zum Zitat B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969), p. 307. B. Truel, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969), p. 307.
19.
Zurück zum Zitat L. E. Gurevich, “Thermoelectric properties of semiconductors. I,” Zh. Eksp. Teor. Fiz. 16, 193 (1946). L. E. Gurevich, “Thermoelectric properties of semiconductors. I,” Zh. Eksp. Teor. Fiz. 16, 193 (1946).
20.
Zurück zum Zitat C. Herring, “Theory of the thermoelectric power of semiconductors,” Phys. Rev. 96, 1163 (1954).CrossRef C. Herring, “Theory of the thermoelectric power of semiconductors,” Phys. Rev. 96, 1163 (1954).CrossRef
21.
Zurück zum Zitat L. E. Gurevich and I. Ya. Korenblit, Influence of electron dragging by phonons and their mutual dragging on the kinetic coefficients of semimetals,” Fiz. Tverd. Tela 6, 856–863 (1964). L. E. Gurevich and I. Ya. Korenblit, Influence of electron dragging by phonons and their mutual dragging on the kinetic coefficients of semimetals,” Fiz. Tverd. Tela 6, 856–863 (1964).
22.
Zurück zum Zitat J. W. Ekin and B. W. Maxfield, “Electrical resistivity of potassium from 1 to 25 K,” Phys. Rev. B 4, 4215–4225 (1971).CrossRef J. W. Ekin and B. W. Maxfield, “Electrical resistivity of potassium from 1 to 25 K,” Phys. Rev. B 4, 4215–4225 (1971).CrossRef
Metadaten
Titel
The Role of Shear Waves in Electron–Phonon Drag in Potassium Crystals at Low Temperatures
verfasst von
I. I. Kuleev
I. G. Kuleev
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20100063

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe