Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Calorimetric Effects in the Structural and Phase Transitions of Metals and Alloys

verfasst von: L. V. Spivak, N. E. Shchepina

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Differential scanning calorimetry belongs to a group of rather unique study methods, which makes it possible to investigate in situ the regularities of structural and phase transitions in metallic alloys within a broad range of temperatures (from –100 to 1600°C) at a sufficiently high precision of registering the heat effects of phase transitions. Our paper reviews the results of DSC studies for the alloys based on metals with polymorphism, the thermoelastic martensitic transitions, the decomposition and formation of solid solutions, and the crystallization of amorphous metallic metal-metal alloys. This review puts particular emphasis on considering phase transitions in hydrogen-containing alloys, both crystalline and amorphous.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Yu. Shakhnazarov, “Chernov’s iron–carbon diagram, the structure and properties of steel,” Met. Sci. Heat Treat. 51, 3–6 (2009).CrossRef K. Yu. Shakhnazarov, “Chernov’s iron–carbon diagram, the structure and properties of steel,” Met. Sci. Heat Treat. 51, 3–6 (2009).CrossRef
2.
Zurück zum Zitat M. L. Bernshtein, G. V. Kurdyumov, V. S. Mes’kin, A. A. Popov, V. D. Sadovskii, Yu. A. Skakov, V. M. Schastlivtsev, Yu. N. Taran, L. M. Utevskii, R. I. Entin, “Iron–Carbon / Metallurgy and Heat Treatment of Steel and Cast Iron, Ed. by A. G. Rakhshtadt, L. M. Kaputkina, S. D. Prkoshkin, and A.V. Supov (Intermet Inzhiniring, Moscow, 2005), Vol. 2, p. 526 [in Russian]. M. L. Bernshtein, G. V. Kurdyumov, V. S. Mes’kin, A. A. Popov, V. D. Sadovskii, Yu. A. Skakov, V. M. Schastlivtsev, Yu. N. Taran, L. M. Utevskii, R. I. Entin, “Iron–Carbon / Metallurgy and Heat Treatment of Steel and Cast Iron, Ed. by A. G. Rakhshtadt, L. M. Kaputkina, S. D. Prkoshkin, and A.V. Supov (Intermet Inzhiniring, Moscow, 2005), Vol. 2, p. 526 [in Russian].
3.
Zurück zum Zitat V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Perlite in Carbon Steels (UrO RAN, Yekaterinburg, 2006) [in Russian]. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Perlite in Carbon Steels (UrO RAN, Yekaterinburg, 2006) [in Russian].
4.
Zurück zum Zitat A. S. Pandit and H. K. D. H. Bhadeshia, “Divorced pearlite in steels,” Proc. R. Society A 468, No. 2145, 2767–2778 (2012).CrossRef A. S. Pandit and H. K. D. H. Bhadeshia, “Divorced pearlite in steels,” Proc. R. Society A 468, No. 2145, 2767–2778 (2012).CrossRef
5.
Zurück zum Zitat V. G. Vaks and K. Yu. Khromov, “On the theory of austenite-cementite phase equilibria in steels,” J. Exp. Theor. Phys. 106, No. 2, 265–279 (2008).CrossRef V. G. Vaks and K. Yu. Khromov, “On the theory of austenite-cementite phase equilibria in steels,” J. Exp. Theor. Phys. 106, No. 2, 265–279 (2008).CrossRef
6.
Zurück zum Zitat V. I. Zel’dovich, “Three mechanisms of formation of austenite and inheritance of structure in iron alloys,” Met. Sci. Heat Treat. 50, No. 9–10, 442–448 (2008).CrossRef V. I. Zel’dovich, “Three mechanisms of formation of austenite and inheritance of structure in iron alloys,” Met. Sci. Heat Treat. 50, No. 9–10, 442–448 (2008).CrossRef
7.
Zurück zum Zitat X. Zhang, T. Hickel, J. Rogal, S. Fahler, R. Drautz, and J. Neugebauer, “Structural transformations among austenite, ferrite and cementite in Fe–C alloys: A unified theory based on ab initio simulations,” Acta Mater. 99, 281–289 (2015).CrossRef X. Zhang, T. Hickel, J. Rogal, S. Fahler, R. Drautz, and J. Neugebauer, “Structural transformations among austenite, ferrite and cementite in Fe–C alloys: A unified theory based on ab initio simulations,” Acta Mater. 99, 281–289 (2015).CrossRef
8.
Zurück zum Zitat I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnel’son, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, No. 4, 362–388 (2017).CrossRef I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnel’son, “Towards the ab initio based theory of phase transformations in iron and steel,” Phys. Met. Metallogr. 118, No. 4, 362–388 (2017).CrossRef
9.
Zurück zum Zitat V. S. Biron and I. V. Blokhin, “ Some features of phase transformations in the iron-carbon system,” J. Siberian Federal Univ. Eng. Technol. 3, No. 2, 238–249 (2009). V. S. Biron and I. V. Blokhin, “ Some features of phase transformations in the iron-carbon system,” J. Siberian Federal Univ. Eng. Technol. 3, No. 2, 238–249 (2009).
10.
Zurück zum Zitat S. A. Oglezneva, M. N. Kachenyuk, N. Portalov, and L. V. Spivak, “Effect of the dispersion of iron and nickel powders on the phase transformation temperatures and the sintering kinetics,” Russ. Metall., No. 3, 250−255 (2015). S. A. Oglezneva, M. N. Kachenyuk, N. Portalov, and L. V. Spivak, “Effect of the dispersion of iron and nickel powders on the phase transformation temperatures and the sintering kinetics,” Russ. Metall., No. 3, 250−255 (2015).
11.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Calorimetry of the phase transformations in carbon steels in the intercritical temperature range,” Russ. Metall. 2020, 583–588 (2020).CrossRef L. V. Spivak and N. E. Shchepina, “Calorimetry of the phase transformations in carbon steels in the intercritical temperature range,” Russ. Metall. 2020, 583–588 (2020).CrossRef
12.
Zurück zum Zitat P. J. Van Ekeren, Handbook of Thermal Analysis and Calorimetry Vol. 1: Principles and Practice, Ed. by M. E. Brown (Elsevier, Amsterdam, 1998), pp. 75–114. P. J. Van Ekeren, Handbook of Thermal Analysis and Calorimetry Vol. 1: Principles and Practice, Ed. by M. E. Brown (Elsevier, Amsterdam, 1998), pp. 75–114.
13.
Zurück zum Zitat V. A. Aleshkevich, Molecular Physics (Fizmatlit, Moscow, 2016) [in Russian]. V. A. Aleshkevich, Molecular Physics (Fizmatlit, Moscow, 2016) [in Russian].
14.
Zurück zum Zitat S. M. Sarge, G. W. H. Höhne, and W. F. Hemminger, Calorimetry. Fundamentals Instrumentation and Applications (Wiley, Weinheim, 2014), p. 304. S. M. Sarge, G. W. H. Höhne, and W. F. Hemminger, Calorimetry. Fundamentals Instrumentation and Applications (Wiley, Weinheim, 2014), p. 304.
15.
Zurück zum Zitat H. E. Kisinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29, 1702–1706 (1957).CrossRef H. E. Kisinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29, 1702–1706 (1957).CrossRef
16.
Zurück zum Zitat Physical Metal Science, Ed. by R. U. Red Kan and P. T. Khaazen (Metallurgiya, Moscow, 1987), Vol. 2, p. 624 [in Russian]. Physical Metal Science, Ed. by R. U. Red Kan and P. T. Khaazen (Metallurgiya, Moscow, 1987), Vol. 2, p. 624 [in Russian].
17.
Zurück zum Zitat Ya. S. Umanskii and Yu. A. Skakov, Metal Physics (Atomizdat, Moscow, 1978). Ya. S. Umanskii and Yu. A. Skakov, Metal Physics (Atomizdat, Moscow, 1978).
18.
Zurück zum Zitat S. S. D’yachenko, Formation of Austenite in Iron–Carbon alloys (Metallurgiya, Moscow, 1982) [in Russian]. S. S. D’yachenko, Formation of Austenite in Iron–Carbon alloys (Metallurgiya, Moscow, 1982) [in Russian].
19.
Zurück zum Zitat D. O. Panov and A. I. Smirnov, “Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range,” Phys. Met. Metallogr. 118, No. 11, 1081–1090 (2017).CrossRef D. O. Panov and A. I. Smirnov, “Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range,” Phys. Met. Metallogr. 118, No. 11, 1081–1090 (2017).CrossRef
20.
Zurück zum Zitat D. O. Panov, Yu. N. Simonov, L. V. Spivak, and A. I. Smirnov, “Stages of austenitization of cold-worked low-carbon steel in intercritical temperature range,” Phys. Met. Metallogr. 116, No. 8, 802–809 (2015).CrossRef D. O. Panov, Yu. N. Simonov, L. V. Spivak, and A. I. Smirnov, “Stages of austenitization of cold-worked low-carbon steel in intercritical temperature range,” Phys. Met. Metallogr. 116, No. 8, 802–809 (2015).CrossRef
21.
Zurück zum Zitat M. A. Dyshlyuk, “Influence of nitrogen on calorimetric effects in 38Kh2MYuA steel,” Abstracts of the Report. XV Ural School of Thermal Metals Science Specialists (Izd-vo Ural’skogo un-ta, Yekaterinburg, 2020), pp. 108–110. M. A. Dyshlyuk, “Influence of nitrogen on calorimetric effects in 38Kh2MYuA steel,” Abstracts of the Report. XV Ural School of Thermal Metals Science Specialists (Izd-vo Ural’skogo un-ta, Yekaterinburg, 2020), pp. 108–110.
22.
Zurück zum Zitat L. M. Kleiner, L. V. Spivak, A. A. Shatsov, and K. A. Kobelev, “ Regularities of austenitization of low-carbon martensitic steels in the intercritical temperature range,” Vestnik Perm. Un–Ta. Ser.: Fizika, No. 1, 93–97 (2011). L. M. Kleiner, L. V. Spivak, A. A. Shatsov, and K. A. Kobelev, “ Regularities of austenitization of low-carbon martensitic steels in the intercritical temperature range,” Vestnik Perm. Un–Ta. Ser.: Fizika, No. 1, 93–97 (2011).
23.
Zurück zum Zitat S. Raju, J. B. Ganesh, A. K. Rai, R. Mythili, S. Saroja, and B. Raj, “A study on martensitic phase transformation in 9Cr–1W–0.23V–0.063Ta–0.56Mn–0.09C–0.02N (wt %) reduced activation steel using differential scanning calorimetry,” J. Nucl. Mater. 405, No. 1, 59–69 (2010).CrossRef S. Raju, J. B. Ganesh, A. K. Rai, R. Mythili, S. Saroja, and B. Raj, “A study on martensitic phase transformation in 9Cr–1W–0.23V–0.063Ta–0.56Mn–0.09C–0.02N (wt %) reduced activation steel using differential scanning calorimetry,” J. Nucl. Mater. 405, No. 1, 59–69 (2010).CrossRef
24.
Zurück zum Zitat M. D. Perkas and V. M. Kardonskii, High Strength Martensitic Steels (Metallurgiya, Moscow, 1970) [in Russian]. M. D. Perkas and V. M. Kardonskii, High Strength Martensitic Steels (Metallurgiya, Moscow, 1970) [in Russian].
25.
Zurück zum Zitat G. V. Kurdjumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian]. G. V. Kurdjumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].
26.
Zurück zum Zitat L. M. Kleiner, L. V. Spivak, A. A. Shatsov, and M. G. Zakirova, “Multiplet behavior of the processes of austenitization and decomposition of austenite in low-carbon martensitic steels,” Vestnik Perm. Un–Ta. Ser.: Fizika, No. 1, 111–114 (2010). L. M. Kleiner, L. V. Spivak, A. A. Shatsov, and M. G. Zakirova, “Multiplet behavior of the processes of austenitization and decomposition of austenite in low-carbon martensitic steels,” Vestnik Perm. Un–Ta. Ser.: Fizika, No. 1, 111–114 (2010).
27.
Zurück zum Zitat L. V. Spivak, “Phase transformations during heating of steels of the martensitic class,” Vestnik Perm. Un-ta. Ser.: Fizika, No. 1, 62–64 (2013). L. V. Spivak, “Phase transformations during heating of steels of the martensitic class,” Vestnik Perm. Un-ta. Ser.: Fizika, No. 1, 62–64 (2013).
28.
Zurück zum Zitat N. D. Zemtsova, M. A. Eremina, and V. A. Zavalishin, “Calorimetric effects during the α → γ transformation in Fe–Ni–Ti metastable alloys,” Phys. Met. Metallogr. 113, No. 5, 466–479 (2012).CrossRef N. D. Zemtsova, M. A. Eremina, and V. A. Zavalishin, “Calorimetric effects during the α → γ transformation in Fe–Ni–Ti metastable alloys,” Phys. Met. Metallogr. 113, No. 5, 466–479 (2012).CrossRef
29.
Zurück zum Zitat N. D. Zemtsova, “Anomalies in the physical properties of metastable Fe–Ni alloys heated to the temperature interval of the α → γ transformation,” Tech. Phys. 59, 1050–1157 (2014). N. D. Zemtsova, “Anomalies in the physical properties of metastable Fe–Ni alloys heated to the temperature interval of the α → γ transformation,” Tech. Phys. 59, 1050–1157 (2014).
30.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Thermal decomposition of titanium hydride,” Al’ternativnaya Energetika i Ekologiya, No. 21, 84–89 (2015). L. V. Spivak and N. E. Shchepina, “Thermal decomposition of titanium hydride,” Al’ternativnaya Energetika i Ekologiya, No. 21, 84–89 (2015).
31.
Zurück zum Zitat S. Primig and H. Leitner, “Separation of overlapping retained austenite decomposition and cementite precipitation reactions during tempering of martensitic steel by means of thermal analysis,” Thermochim. Acta. 526, 111–117 (2011).CrossRef S. Primig and H. Leitner, “Separation of overlapping retained austenite decomposition and cementite precipitation reactions during tempering of martensitic steel by means of thermal analysis,” Thermochim. Acta. 526, 111–117 (2011).CrossRef
32.
Zurück zum Zitat J. B. Ganesh, S. Raju, A. K. Rai, E. Mohandas, M. Vijayalakshmi, K. B. S. Rao, and B. Raj, “Differential scanning calorimetry study of diffusional and martensitic phase transformations in some 9 wt % Cr low carbon ferritic steels,” Mater. Sci. Technol. 27, No. 2, 500–512 (2011).CrossRef J. B. Ganesh, S. Raju, A. K. Rai, E. Mohandas, M. Vijayalakshmi, K. B. S. Rao, and B. Raj, “Differential scanning calorimetry study of diffusional and martensitic phase transformations in some 9 wt % Cr low carbon ferritic steels,” Mater. Sci. Technol. 27, No. 2, 500–512 (2011).CrossRef
33.
Zurück zum Zitat V. M. Farber, V. A. Khotinov, O. V. Selivanova, O. N. Polukhina, A. S. Yurovskikh, D. O. Panov, “Kinetics of formation of austenite and effect of heating in the intercritical temperature range on the structure of steel 08G2B,” Met. Sci. Heat Treat. 58, 650–655 (2017).CrossRef V. M. Farber, V. A. Khotinov, O. V. Selivanova, O. N. Polukhina, A. S. Yurovskikh, D. O. Panov, “Kinetics of formation of austenite and effect of heating in the intercritical temperature range on the structure of steel 08G2B,” Met. Sci. Heat Treat. 58, 650–655 (2017).CrossRef
34.
Zurück zum Zitat A. Bojack, L. Zhao, P. F. Morris, and J. Sietsma, “In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel,” Mater. Charact. 71, 77–86 (2012).CrossRef A. Bojack, L. Zhao, P. F. Morris, and J. Sietsma, “In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel,” Mater. Charact. 71, 77–86 (2012).CrossRef
35.
Zurück zum Zitat V. M. Chernov, M. V. Leont’eva-Smirnova, M. M. Potapenko, N. A. Polekhina, I. Yu. Litovchenko, A. N. Tyumentsev, E. G. Astafurova, and L. P. Khromova, “Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and CHS-139,” Tech. Phys. 16, No. 1, 97–102 (2016).CrossRef V. M. Chernov, M. V. Leont’eva-Smirnova, M. M. Potapenko, N. A. Polekhina, I. Yu. Litovchenko, A. N. Tyumentsev, E. G. Astafurova, and L. P. Khromova, “Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and CHS-139,” Tech. Phys. 16, No. 1, 97–102 (2016).CrossRef
36.
Zurück zum Zitat K. N. Vdovin, K. G. Pivovarova, and M. A. Lisovskaya, “Application of thermal analysis to study the structure and properties of roll steels,” MiTOM, No. 5, 22–25 (2014). K. N. Vdovin, K. G. Pivovarova, and M. A. Lisovskaya, “Application of thermal analysis to study the structure and properties of roll steels,” MiTOM, No. 5, 22–25 (2014).
37.
Zurück zum Zitat D. V. Gadeev and A. G. Illarionov, “Determination of beta-transus temperature of two-phase titanium alloys using differential scanning calorimetry,” Solid State Phenom. 284, 259–264 (2018).CrossRef D. V. Gadeev and A. G. Illarionov, “Determination of beta-transus temperature of two-phase titanium alloys using differential scanning calorimetry,” Solid State Phenom. 284, 259–264 (2018).CrossRef
38.
Zurück zum Zitat M. Behera, S. Raju, B. Jeyaganesh, R. Mythili, S. Saroja, “A Study on thermal properties and α (hcp) → β (bcc) phase transformation energetics in Ti–5 wt % Ta–1.8 wt % Nb alloy using inverse drop calorimetry,” Int. J. Thermophys. 31, No. 11, 2246–2263 (2010).CrossRef M. Behera, S. Raju, B. Jeyaganesh, R. Mythili, S. Saroja, “A Study on thermal properties and α (hcp) → β (bcc) phase transformation energetics in Ti–5 wt % Ta–1.8 wt % Nb alloy using inverse drop calorimetry,” Int. J. Thermophys. 31, No. 11, 2246–2263 (2010).CrossRef
39.
Zurück zum Zitat A. J. Prabha, S. Raju, B. Jeyaganesh, A. K. Rai, M. Behera, M. Vijayalakshmi, G. Paneerselvam, and I. Johnson, “Thermodynamics of α'' → β phase transformation and heat capacity measurements in Ti–15 at % Nb alloy,” Phys. B 406, No. 22, 4200–4209 (2011).CrossRef A. J. Prabha, S. Raju, B. Jeyaganesh, A. K. Rai, M. Behera, M. Vijayalakshmi, G. Paneerselvam, and I. Johnson, “Thermodynamics of α'' → β phase transformation and heat capacity measurements in Ti–15 at % Nb alloy,” Phys. B 406, No. 22, 4200–4209 (2011).CrossRef
40.
Zurück zum Zitat M. Behera, S. Raju, R. Mythili, and S. Saroja, “Study of kinetics of α → β phase transformation in Ti–4.4 wt % Ta–1.9 wt % Nb alloy using differential scanning calorimetry,” Int. J. Thermophys. 124, No. 3, 1217–1228 (2016). M. Behera, S. Raju, R. Mythili, and S. Saroja, “Study of kinetics of α → β phase transformation in Ti–4.4 wt % Ta–1.9 wt % Nb alloy using differential scanning calorimetry,” Int. J. Thermophys. 124, No. 3, 1217–1228 (2016).
41.
Zurück zum Zitat V. V. Filippov, D. A. Yagodin, A. A. Kyltseva, S. K. Estimirovf, and K. J. Shunyaev, “The study of eutectoid decomposition kinetics of Cu50Zr50 alloy,” J. Therm. Anal. Calorim. 127, 773–778 (2017).CrossRef V. V. Filippov, D. A. Yagodin, A. A. Kyltseva, S. K. Estimirovf, and K. J. Shunyaev, “The study of eutectoid decomposition kinetics of Cu50Zr50 alloy,” J. Therm. Anal. Calorim. 127, 773–778 (2017).CrossRef
44.
Zurück zum Zitat A. K. Rai, S. Raju, B. Jeyaganesh, E. Mohandas, R. Sudha, V. Ganesan, “Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study,” J. Nucl. Mater. 383, 215–225 (2009).CrossRef A. K. Rai, S. Raju, B. Jeyaganesh, E. Mohandas, R. Sudha, V. Ganesan, “Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: A differential scanning calorimetry study,” J. Nucl. Mater. 383, 215–225 (2009).CrossRef
45.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Features of the polymorphic transformations in iron and zirconium,” Zh. Tech. Fiz. 90, No. 7, 1145–1150 (2020). L. V. Spivak and N. E. Shchepina, “Features of the polymorphic transformations in iron and zirconium,” Zh. Tech. Fiz. 90, No. 7, 1145–1150 (2020).
46.
47.
Zurück zum Zitat Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, No. 1, 79–86 (2015).CrossRef Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, No. 1, 79–86 (2015).CrossRef
48.
Zurück zum Zitat Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, No. 3, 267–274 (2016).CrossRef Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, No. 3, 267–274 (2016).CrossRef
50.
Zurück zum Zitat S. H. Chang and S. K. Wu, “Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis,” Mater. Charact. 59, 987–990 (2008).CrossRef S. H. Chang and S. K. Wu, “Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analysis,” Mater. Charact. 59, 987–990 (2008).CrossRef
51.
Zurück zum Zitat H. J. Yu, X. T. Zu, H. Fu, X. Y. Zhang, and Z. G. Wang, “Effect of annealing and heating/ cooling rate on the transformation temperatures of NiFeGa alloy,” J. Alloy. Compd. 470, 237–240 (2009).CrossRef H. J. Yu, X. T. Zu, H. Fu, X. Y. Zhang, and Z. G. Wang, “Effect of annealing and heating/ cooling rate on the transformation temperatures of NiFeGa alloy,” J. Alloy. Compd. 470, 237–240 (2009).CrossRef
52.
Zurück zum Zitat R. I. Babicheva, Doctoral Dissertation in Mathematics and Physics (Ufa, 2015). R. I. Babicheva, Doctoral Dissertation in Mathematics and Physics (Ufa, 2015).
53.
Zurück zum Zitat K. Yildiz, M. Kök, and F. Dağdelen, “Cobalt addition effects on martensitic transformation and micristructural properties of high-temperature Cu-Fe shape-memory alloys,” J. Therm. Anal. Calorim. 120, No. 2, 1227–1232 (2015). https://doi.org/10.1007/s10973-015-4395-5CrossRef K. Yildiz, M. Kök, and F. Dağdelen, “Cobalt addition effects on martensitic transformation and micristructural properties of high-temperature Cu-Fe shape-memory alloys,” J. Therm. Anal. Calorim. 120, No. 2, 1227–1232 (2015). https://doi.org/10.1007/s10973-015-4395-5CrossRef
54.
Zurück zum Zitat D. Velazquez and R. Romero, “Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy,” J. Therm. Anal. Calorim. 130, 2007–2013 (2017).CrossRef D. Velazquez and R. Romero, “Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy,” J. Therm. Anal. Calorim. 130, 2007–2013 (2017).CrossRef
55.
Zurück zum Zitat K. Kus and T. Breczko, “DSC-investigation of the effect of annealing temperature on the phase transformation behavior in Ni–Ti shape memory alloy,” Mater. Phys. Mech. 9, 75–83 (2010). K. Kus and T. Breczko, “DSC-investigation of the effect of annealing temperature on the phase transformation behavior in Ni–Ti shape memory alloy,” Mater. Phys. Mech. 9, 75–83 (2010).
56.
Zurück zum Zitat M. Stipcich and R. Romero, “β-phase thermal degradation in Zr-added Cu–Zn–Al shape memory alloy: a DSC study,” J. Therm. Anal. Calorim. 129, No. 1, 201–207 (2017).CrossRef M. Stipcich and R. Romero, “β-phase thermal degradation in Zr-added Cu–Zn–Al shape memory alloy: a DSC study,” J. Therm. Anal. Calorim. 129, No. 1, 201–207 (2017).CrossRef
57.
Zurück zum Zitat Z. N. Zhou, L. Yang, R. C. Li, and J.-G. Li, “Martensitic transformations and kinetics in Ni–Mn–In–Mg shape memory alloys,” Intermetallics 92, 49–54 (2018).CrossRef Z. N. Zhou, L. Yang, R. C. Li, and J.-G. Li, “Martensitic transformations and kinetics in Ni–Mn–In–Mg shape memory alloys,” Intermetallics 92, 49–54 (2018).CrossRef
58.
Zurück zum Zitat A. G. Varzaneh, P. Kameli, V. R. Zahedi, F. Karimzadeh, and H. Salamati, “Effect of heat treatment on martensitic transformation of Ni47Mn40Sn13 ferromagnetic shape memory alloy prepared by mechanical alloying,” Met. Mater. Int. 21, 758–764 (2015).CrossRef A. G. Varzaneh, P. Kameli, V. R. Zahedi, F. Karimzadeh, and H. Salamati, “Effect of heat treatment on martensitic transformation of Ni47Mn40Sn13 ferromagnetic shape memory alloy prepared by mechanical alloying,” Met. Mater. Int. 21, 758–764 (2015).CrossRef
59.
Zurück zum Zitat H. X. Zheng, D. Z. Wu, S. C. Xue, J. Frenzel, G. Eggeler, and Q. J. Zhai, “Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons,” Acta. Mater. 59, 5692–5699 (2011).CrossRef H. X. Zheng, D. Z. Wu, S. C. Xue, J. Frenzel, G. Eggeler, and Q. J. Zhai, “Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons,” Acta. Mater. 59, 5692–5699 (2011).CrossRef
60.
Zurück zum Zitat Z. Q. Liao, “Martensitic transformation and magnetic properties of Ni-Mn-In Heusler alloys,” Master of Science Dissertation (Nanjing, 2013). Z. Q. Liao, “Martensitic transformation and magnetic properties of Ni-Mn-In Heusler alloys,” Master of Science Dissertation (Nanjing, 2013).
61.
Zurück zum Zitat X. P. Fei, “The structure transformation and magnetic properties of Cu doped NiMnln alloys,” Master of Science Dissertation (Nanjing, 2015). X. P. Fei, “The structure transformation and magnetic properties of Cu doped NiMnln alloys,” Master of Science Dissertation (Nanjing, 2015).
62.
Zurück zum Zitat L. V. Spivak and A. V. Shelyakov, “Anomalous thermal effects during crystallization of amorphous alloys of the TiNi–TiCu system with hydrogen,” Pis’ma Zh. Tekh. Fiz. 35, No. 24, 28–34 (2009). L. V. Spivak and A. V. Shelyakov, “Anomalous thermal effects during crystallization of amorphous alloys of the TiNi–TiCu system with hydrogen,” Pis’ma Zh. Tekh. Fiz. 35, No. 24, 28–34 (2009).
63.
Zurück zum Zitat L. V. Spivak, “Decomposition of Pd–H alloys under heating,” Al’ternativnaya Energetika I Ekologiya (ISJAEE), No. 7, 103–110 (2010). L. V. Spivak, “Decomposition of Pd–H alloys under heating,” Al’ternativnaya Energetika I Ekologiya (ISJAEE), No. 7, 103–110 (2010).
64.
Zurück zum Zitat T. Schober and A. Carl, “A differential thermal analysis study of the vanadium-hydrogen systems,” Phys. Status Solidi A 43, 443–449 (1977).CrossRef T. Schober and A. Carl, “A differential thermal analysis study of the vanadium-hydrogen systems,” Phys. Status Solidi A 43, 443–449 (1977).CrossRef
65.
Zurück zum Zitat Y. Fukai, The Metal – Hydrogen System. Basic Bulk Properties (Springer, Heidelberg, 1999), p. 955. Y. Fukai, The Metal – Hydrogen System. Basic Bulk Properties (Springer, Heidelberg, 1999), p. 955.
66.
Zurück zum Zitat L. V. Spivak, “Calorimetric effects during thermal cycling of V–H alloys,” Al’ternativnaya Energetika i Ekologiya (ISJAEE)., No. 10, 18–21 (2012). L. V. Spivak, “Calorimetric effects during thermal cycling of V–H alloys,” Al’ternativnaya Energetika i Ekologiya (ISJAEE)., No. 10, 18–21 (2012).
67.
Zurück zum Zitat L. V. Spivak, “Abnormal heat effects when heating the alloy system V–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 10, 22–25 (2012). L. V. Spivak, “Abnormal heat effects when heating the alloy system V–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 10, 22–25 (2012).
68.
Zurück zum Zitat M. Koiwa and O. Yoshinari, “Hydride precipitation peak in internal friction of V–H, Nb–H and Ta–H alloys,” Res. Mech. 11, No. 1, 27–45 (1984). M. Koiwa and O. Yoshinari, “Hydride precipitation peak in internal friction of V–H, Nb–H and Ta–H alloys,” Res. Mech. 11, No. 1, 27–45 (1984).
69.
Zurück zum Zitat M. Koiwa and O. Yoshinari, “Twist effect of V–H, Nb–H and Ta–H alloys associated with the precipitation of hydrogen,” Acta Metall. 91, No. 12, 2079–2081 (1989). M. Koiwa and O. Yoshinari, “Twist effect of V–H, Nb–H and Ta–H alloys associated with the precipitation of hydrogen,” Acta Metall. 91, No. 12, 2079–2081 (1989).
70.
Zurück zum Zitat S. Yang, W. Xu, and X. Fu, “Peak temperature correction in the TPD research,” Chin. J. Catal. 9, No. 1, 92–95 (1988). S. Yang, W. Xu, and X. Fu, “Peak temperature correction in the TPD research,” Chin. J. Catal. 9, No. 1, 92–95 (1988).
71.
Zurück zum Zitat K. G. Prashanth, “Influence of mechanical activation on decomposition of titanium hydride,” Mater. Manuf. Process. 25, No. 9, 974–977 (2010).CrossRef K. G. Prashanth, “Influence of mechanical activation on decomposition of titanium hydride,” Mater. Manuf. Process. 25, No. 9, 974–977 (2010).CrossRef
72.
Zurück zum Zitat L. V. Spivak, “Thermokinetic effects during heating and cooling of system alloys Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 23–26 (2013). L. V. Spivak, “Thermokinetic effects during heating and cooling of system alloys Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 23–26 (2013).
73.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “High-temperature calorimetric effects during heating of system alloys Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 31–34 (2013). L. V. Spivak and N. E. Shchepina, “High-temperature calorimetric effects during heating of system alloys Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 31–34 (2013).
74.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Calorimetric effects on heating metastable alloys of system Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 35–38 (2013). L. V. Spivak and N. E. Shchepina, “Calorimetric effects on heating metastable alloys of system Nb–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 35–38 (2013).
75.
Zurück zum Zitat L. V. Spivak, N. E. Shchepina, and M. A. Kulikova, “Low-temperature calorimetric effects during thermal cycling of system alloys Ta–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 16, 24–29 (2014). L. V. Spivak, N. E. Shchepina, and M. A. Kulikova, “Low-temperature calorimetric effects during thermal cycling of system alloys Ta–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 16, 24–29 (2014).
76.
Zurück zum Zitat L. V. Spivak, N. E. Shchepina, and M. A. Kulikova, “High-temperature calorimetric effects during heating of system alloys Ta–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 16, 30–34 (2014). L. V. Spivak, N. E. Shchepina, and M. A. Kulikova, “High-temperature calorimetric effects during heating of system alloys Ta–H,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 16, 30–34 (2014).
77.
Zurück zum Zitat E. V. Kurikhina and V. N. Simonov, “Phase transformations. Exothermic reaction,” Nauka i Obrazovanie. Nauchnoe Izdanie MGTU Im. Baumana, No. 2, 1–6 (2012). E. V. Kurikhina and V. N. Simonov, “Phase transformations. Exothermic reaction,” Nauka i Obrazovanie. Nauchnoe Izdanie MGTU Im. Baumana, No. 2, 1–6 (2012).
79.
Zurück zum Zitat L. Ren, J. Zhu, L. Nan, and K. Yang, “Differential scanning calorimetry analysis on Cu precipitation in a high Cu austenitic stainless steel,” Mater. Des. 32, 3980–3985 (2011).CrossRef L. Ren, J. Zhu, L. Nan, and K. Yang, “Differential scanning calorimetry analysis on Cu precipitation in a high Cu austenitic stainless steel,” Mater. Des. 32, 3980–3985 (2011).CrossRef
80.
Zurück zum Zitat M. Long, T. Liu, H. Chen, D. Chen, H. Duan, H. Fan, K. Tan, and W. He, “Using differential scanning calorimetry to characterize the precipitation and dissolution of V(CN) and VC particles,” J. Mater. Res., No. 6, 1–12 (2018). M. Long, T. Liu, H. Chen, D. Chen, H. Duan, H. Fan, K. Tan, and W. He, “Using differential scanning calorimetry to characterize the precipitation and dissolution of V(CN) and VC particles,” J. Mater. Res., No. 6, 1–12 (2018).
81.
Zurück zum Zitat K. S. Ghosh and N. Gao, “Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al–Zn–Mg alloy,” Trans. Nonferrous Met. Soc. China. 21, 1199–1209 (2011).CrossRef K. S. Ghosh and N. Gao, “Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al–Zn–Mg alloy,” Trans. Nonferrous Met. Soc. China. 21, 1199–1209 (2011).CrossRef
82.
Zurück zum Zitat P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, and E. Kozeschnik, “Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminum alloys during non-isothermal DSC analysis,” J. Alloys Compd. 609, 129–136 (2014).CrossRef P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, and E. Kozeschnik, “Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminum alloys during non-isothermal DSC analysis,” J. Alloys Compd. 609, 129–136 (2014).CrossRef
83.
Zurück zum Zitat A. Falahati, W. U. Jun, P. Lang, M. R. Ahmadi, E. Povoden-Karadeniz, and E. Kozeschnik, “Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry,” Trans. Nonferrous Met. Soc. China. 24, 2157–2167 (2014).CrossRef A. Falahati, W. U. Jun, P. Lang, M. R. Ahmadi, E. Povoden-Karadeniz, and E. Kozeschnik, “Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry,” Trans. Nonferrous Met. Soc. China. 24, 2157–2167 (2014).CrossRef
84.
Zurück zum Zitat M. Liu, Z. Wu, R. Yang, J. Wei, Y. Yu, P. C. Skaret, and H. J. Roven, “DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy,” Prog. Nat. Sci.: Mater. Int. 25, 153–159 (2015).CrossRef M. Liu, Z. Wu, R. Yang, J. Wei, Y. Yu, P. C. Skaret, and H. J. Roven, “DSC analyses of static and dynamic precipitation of an Al–Mg–Si–Cu aluminum alloy,” Prog. Nat. Sci.: Mater. Int. 25, 153–159 (2015).CrossRef
85.
Zurück zum Zitat S. Colombo, P. Battaini, and G. Airoldi, “Precipitation kinetics in Ag–7.5 wt % Cu alloy studied by isothermal DSC and electricalresistance measurements,” J. Alloys Compd. 437, 107–112 (2007).CrossRef S. Colombo, P. Battaini, and G. Airoldi, “Precipitation kinetics in Ag–7.5 wt % Cu alloy studied by isothermal DSC and electricalresistance measurements,” J. Alloys Compd. 437, 107–112 (2007).CrossRef
86.
Zurück zum Zitat D. Hamana, M. Hachouf, L. Boumaza, and Z. E. A. Biskri, “Precipitation kinetics and mechanism in Cu–7 wt. % Ag alloy,” Mater. Sci. Appl. 2, No. 7, 899–910 (2011). D. Hamana, M. Hachouf, L. Boumaza, and Z. E. A. Biskri, “Precipitation kinetics and mechanism in Cu–7 wt. % Ag alloy,” Mater. Sci. Appl. 2, No. 7, 899–910 (2011).
87.
Zurück zum Zitat G. Wloch, K. Sokolowski, P. Ostachowski, A. Wicher, and J. Sobota, “Decomposition of supersaturated solid solution during non-isothermal aging and its effect on the physical properties and microstructure of the Ag–Cu7.5 alloy,” J. Mater. Eng. Perform., No. 12, 1–7 (2019). G. Wloch, K. Sokolowski, P. Ostachowski, A. Wicher, and J. Sobota, “Decomposition of supersaturated solid solution during non-isothermal aging and its effect on the physical properties and microstructure of the Ag–Cu7.5 alloy,” J. Mater. Eng. Perform., No. 12, 1–7 (2019).
88.
Zurück zum Zitat S. K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, “Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures,” Mater. Lett. 59, 629–632 (2005).CrossRef S. K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, “Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures,” Mater. Lett. 59, 629–632 (2005).CrossRef
89.
Zurück zum Zitat H. Fröck, M. Graser, B. Milkereit, M. Reich, M. Lechner, M. Merklein, and O. Kessler, “Precipitation behaviour and mechanical properties during short-term heat treatment for tailor heat treated profiles (THTP) of aluminium alloy 6060,” Mater. Sci. Forum, The 15th International Conference on Aluminium Precipitation (Behaviour and Mechanical Properties). 877, 400–406 (2017). H. Fröck, M. Graser, B. Milkereit, M. Reich, M. Lechner, M. Merklein, and O. Kessler, “Precipitation behaviour and mechanical properties during short-term heat treatment for tailor heat treated profiles (THTP) of aluminium alloy 6060,” Mater. Sci. Forum, The 15th International Conference on Aluminium Precipitation (Behaviour and Mechanical Properties). 877, 400–406 (2017).
90.
Zurück zum Zitat Fröck H., B. Milkereit, P. Wiechmann, A. Springer, M. Sander, O. Kessler, and M. Reich, “Influence of solution-annealing parameters on the continuous cooling precipitation of aluminum alloy 6082,” Metals 8, No. 265, 1–16 (2018).CrossRef Fröck H., B. Milkereit, P. Wiechmann, A. Springer, M. Sander, O. Kessler, and M. Reich, “Influence of solution-annealing parameters on the continuous cooling precipitation of aluminum alloy 6082,” Metals 8, No. 265, 1–16 (2018).CrossRef
91.
Zurück zum Zitat R. H. Kemsies, B. Milkereit, S. Wenner, R. Holmestad, and O. Kessler, “In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al–Mn–Fe–Si(–Mg) alloys,” Mater. Des. 146, No. 15, 96–107 (2018).CrossRef R. H. Kemsies, B. Milkereit, S. Wenner, R. Holmestad, and O. Kessler, “In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al–Mn–Fe–Si(–Mg) alloys,” Mater. Des. 146, No. 15, 96–107 (2018).CrossRef
92.
Zurück zum Zitat J. Osten, B. Milkereit, C. Schick, and O. Kessler, “Dissolution and precipitation behaviour during continuous heating of Al–Mg–Si alloys in a wide range of heating rates,” Materials 8, No. 5, 2830–2848 (2015).CrossRef J. Osten, B. Milkereit, C. Schick, and O. Kessler, “Dissolution and precipitation behaviour during continuous heating of Al–Mg–Si alloys in a wide range of heating rates,” Materials 8, No. 5, 2830–2848 (2015).CrossRef
93.
Zurück zum Zitat Introduction to Thermal Analysis, Ed. by M. E. Brown (Kliwer, New York, 2001). Introduction to Thermal Analysis, Ed. by M. E. Brown (Kliwer, New York, 2001).
94.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Calorimetric effects during phase transformations in duralumin,” Fundamental’Nye Problemy Sovremennogo Materialovedeniya 11, No. 3, 376–380 (2014). L. V. Spivak and N. E. Shchepina, “Calorimetric effects during phase transformations in duralumin,” Fundamental’Nye Problemy Sovremennogo Materialovedeniya 11, No. 3, 376–380 (2014).
95.
Zurück zum Zitat L. V. Spivak and N. E. Shchepina, “Differential scanning calorimetry of the processes of dissolution and separation of the intermetallic phase in the α-solid solution of alloy D1,” Fundamental’Nye Problemy Sovremennogo Materialovedeniya 19, No. 2, 170–175 (2019). L. V. Spivak and N. E. Shchepina, “Differential scanning calorimetry of the processes of dissolution and separation of the intermetallic phase in the α-solid solution of alloy D1,” Fundamental’Nye Problemy Sovremennogo Materialovedeniya 19, No. 2, 170–175 (2019).
96.
Zurück zum Zitat V. V. Slezov and V. V. Sagalovich, “Diffusion decomposition of solid solutions,” Usp. Fiz. Nauk 151, 67–104 (1987).CrossRef V. V. Slezov and V. V. Sagalovich, “Diffusion decomposition of solid solutions,” Usp. Fiz. Nauk 151, 67–104 (1987).CrossRef
97.
Zurück zum Zitat Sudzuki, K., Fudzimora, H., Hasimoto, K., Amorphous Metals (Metallurgiya, Moscow, 1987). Sudzuki, K., Fudzimora, H., Hasimoto, K., Amorphous Metals (Metallurgiya, Moscow, 1987).
98.
Zurück zum Zitat G. E. Abrosimova, “Evolution of structure of amorphous alloys,” Usp. Fiz. Nauk 181, No. 12, 1265–1281 (2011).CrossRef G. E. Abrosimova, “Evolution of structure of amorphous alloys,” Usp. Fiz. Nauk 181, No. 12, 1265–1281 (2011).CrossRef
99.
Zurück zum Zitat L. Collins, N. Grant, and J. Sande, “Crystallizations of amorphous Ni60Nb40,” J. Mater. Sci. 18, 804–814 (1983).CrossRef L. Collins, N. Grant, and J. Sande, “Crystallizations of amorphous Ni60Nb40,” J. Mater. Sci. 18, 804–814 (1983).CrossRef
100.
Zurück zum Zitat W. Zhang and A. Inoue, “Effects of Ti on the thermal stability and glass-forming ability of Ni–Nb glassy alloy,” Mater. Trans. 43, No. 9, 2342–2345 (2002).CrossRef W. Zhang and A. Inoue, “Effects of Ti on the thermal stability and glass-forming ability of Ni–Nb glassy alloy,” Mater. Trans. 43, No. 9, 2342–2345 (2002).CrossRef
101.
Zurück zum Zitat H. Choi-Yim, D. Xu, and W. L. Johnson, “Ni-based bulk metallic glass – alloy system,” J. Appl. Phys. Lett. 82, 1030–1032 (2003).CrossRef H. Choi-Yim, D. Xu, and W. L. Johnson, “Ni-based bulk metallic glass – alloy system,” J. Appl. Phys. Lett. 82, 1030–1032 (2003).CrossRef
102.
Zurück zum Zitat L. Shadowspeaker and R. Busch, “On the fragility of Nb–Ni based and Zr-based bulk metallic glasses,” J. Appl. Phys. Lett. 85, 2508–2510 (2004).CrossRef L. Shadowspeaker and R. Busch, “On the fragility of Nb–Ni based and Zr-based bulk metallic glasses,” J. Appl. Phys. Lett. 85, 2508–2510 (2004).CrossRef
103.
Zurück zum Zitat S. Matsumoto, T. Tokunaga, H. Ohtani, and M. Hasebe, “Thermodynamic analysis of the phase equilibria of the Nb–Ni–Ti system,” Mater. Trans. 46, No. 12, 2920–2930 (2005).CrossRef S. Matsumoto, T. Tokunaga, H. Ohtani, and M. Hasebe, “Thermodynamic analysis of the phase equilibria of the Nb–Ni–Ti system,” Mater. Trans. 46, No. 12, 2920–2930 (2005).CrossRef
104.
Zurück zum Zitat H. Choi-Yim, D. Xu, M. L. Lind, J. F. LoËfflec, and W. L. Johnson, “Structure and mechanical properties of bulk glass-forming Ni–Nb–Sn alloys,” Scr. Mater. 54, 187–190 (2006).CrossRef H. Choi-Yim, D. Xu, M. L. Lind, J. F. LoËfflec, and W. L. Johnson, “Structure and mechanical properties of bulk glass-forming Ni–Nb–Sn alloys,” Scr. Mater. 54, 187–190 (2006).CrossRef
105.
Zurück zum Zitat L. V. Spivak, “Calorimetric effects during crystallization of an amorphous alloy Nb60Ni40,” Vestnik Permskogo Universiteta. Seriya: Fizika, No. 3, 60–63 (2015). L. V. Spivak, “Calorimetric effects during crystallization of an amorphous alloy Nb60Ni40,” Vestnik Permskogo Universiteta. Seriya: Fizika, No. 3, 60–63 (2015).
106.
Zurück zum Zitat S. P. Alisova and P. B. Budberg, Phase Diagrams of Metallic Systems, Ed. by N. V. Ageev, No. 18. (VINITI, 1975), p. 268 [in Russian]. S. P. Alisova and P. B. Budberg, Phase Diagrams of Metallic Systems, Ed. by N. V. Ageev, No. 18. (VINITI, 1975), p. 268 [in Russian].
107.
Zurück zum Zitat M. G. Vasin and V. I. Lad’yanov, “Structural transitions and non-monotonic relaxation processes in liquid metals,” Phys. Rev. E 68, 051202-1–051202-6 (2003).CrossRef M. G. Vasin and V. I. Lad’yanov, “Structural transitions and non-monotonic relaxation processes in liquid metals,” Phys. Rev. E 68, 051202-1–051202-6 (2003).CrossRef
108.
Zurück zum Zitat V. I. Lad’yanov, A. L. Bel’tyukov, V. V. Maslov, A. I. Shishmarin, M. G. Vasin, V. K. Nosenko, and V. A. Mashira, “Viscosity of glass forming alloys based on Fe–Si–B system,” J. Non-Cryst. Solids 353, 3264–3268 (2007).CrossRef V. I. Lad’yanov, A. L. Bel’tyukov, V. V. Maslov, A. I. Shishmarin, M. G. Vasin, V. K. Nosenko, and V. A. Mashira, “Viscosity of glass forming alloys based on Fe–Si–B system,” J. Non-Cryst. Solids 353, 3264–3268 (2007).CrossRef
109.
Zurück zum Zitat M. Scott Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “A conform al solution theory for the energy land scapean glass transition of mixtures,” Fluid Phase Equilib. 241, 147–154 (2006).CrossRef M. Scott Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, “A conform al solution theory for the energy land scapean glass transition of mixtures,” Fluid Phase Equilib. 241, 147–154 (2006).CrossRef
110.
Zurück zum Zitat P. Schloßmacher, N. Boucharat, H. Rösner, G. Wilde, and A. V. Shelyakov, “Crystallization Studies of amorphous melt-spun Ti50Ni25Cu25,” EEICOMAT’02. (2002). Paper Index #O237. P. Schloßmacher, N. Boucharat, H. Rösner, G. Wilde, and A. V. Shelyakov, Crystallization Studies of amorphous melt-spun Ti50Ni25Cu25,” EEICOMAT’02. (2002). Paper Index #O237.
111.
Zurück zum Zitat D. V. Louzguine and A. J. Inoue, “Structural basis for supercooled liquid fragility established by synchrotron-radiation method,” Mater. Sci. 35, 4159–4164 (2000).CrossRef D. V. Louzguine and A. J. Inoue, “Structural basis for supercooled liquid fragility established by synchrotron-radiation method,” Mater. Sci. 35, 4159–4164 (2000).CrossRef
112.
Zurück zum Zitat M. Buchwitz, R. Adlwarth-Dieball, and P. L. Ryder, “Kinetics of the crystallization of amourphous Ti2Ni,” Acta Metall. 41, 1885–1892 (1993).CrossRef M. Buchwitz, R. Adlwarth-Dieball, and P. L. Ryder, “Kinetics of the crystallization of amourphous Ti2Ni,” Acta Metall. 41, 1885–1892 (1993).CrossRef
113.
Zurück zum Zitat P. L. Potapov, A. V. Shelyakov, and D. Schryvers, “On the crystal structure of TiNi–Cu martensite,” Scr. Mater. 44, No. 1, 1–7 (2001).CrossRef P. L. Potapov, A. V. Shelyakov, and D. Schryvers, “On the crystal structure of TiNi–Cu martensite,” Scr. Mater. 44, No. 1, 1–7 (2001).CrossRef
114.
Zurück zum Zitat H. Rösner, P. Schlossmacher, A. V. Shelyakov, and A. M. Glezer, “The influence of coherent TiCu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys,” Acta Mater. 49, 1541–1548 (2001).CrossRef H. Rösner, P. Schlossmacher, A. V. Shelyakov, and A. M. Glezer, “The influence of coherent TiCu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys,” Acta Mater. 49, 1541–1548 (2001).CrossRef
115.
Zurück zum Zitat A. M. Glezer, “Amorphous-crystalline microstructures of heat-treated, melt-spun Ti50Ni25Cu25 ribbons,” Acta Mater. 49, 1541–1548 (2001).CrossRef A. M. Glezer, “Amorphous-crystalline microstructures of heat-treated, melt-spun Ti50Ni25Cu25 ribbons,” Acta Mater. 49, 1541–1548 (2001).CrossRef
116.
Zurück zum Zitat V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys with thermomechanical shape-memory effects,” Phys. Met. Metallogr. 116, No. 12, 1221–1233 (2015).CrossRef V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Structural and phase transformations in quasi-binary TiNi–TiCu alloys with thermomechanical shape-memory effects,” Phys. Met. Metallogr. 116, No. 12, 1221–1233 (2015).CrossRef
117.
Zurück zum Zitat V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys,” Tech. Phys. 61, 554–562 (2016).CrossRef V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. V. Korolev, and N. I. Kourov, “Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys,” Tech. Phys. 61, 554–562 (2016).CrossRef
118.
Zurück zum Zitat V. G. Pushin, A. V. Pushin, N. N. Kuranova, T. E. Kuntsevich, A. N. Uksusnikov, V. P. Dyakina, and N. I. Kourov, “Thermoelastic martensitic transformations, mechanical properties, and shape-memory effects in rapidly quenched Ni45Ti32Hf18Cu5 alloy in the ultrafine-grained state,” Phys. Met. Metallogr. 117, No. 12, 1261–1269 (2016).CrossRef V. G. Pushin, A. V. Pushin, N. N. Kuranova, T. E. Kuntsevich, A. N. Uksusnikov, V. P. Dyakina, and N. I. Kourov, “Thermoelastic martensitic transformations, mechanical properties, and shape-memory effects in rapidly quenched Ni45Ti32Hf18Cu5 alloy in the ultrafine-grained state,” Phys. Met. Metallogr. 117, No. 12, 1261–1269 (2016).CrossRef
119.
Zurück zum Zitat V. G. Pushin, A. V. Pushin, and N. N. Kuranova, “Specific features of the atomic structure of the Ti50Ni25Cu25 alloy amorphized during rapid quenching from a melt,” Phys. Met. Metallogr. 120, No. 2, 164–170 (2019).CrossRef V. G. Pushin, A. V. Pushin, and N. N. Kuranova, “Specific features of the atomic structure of the Ti50Ni25Cu25 alloy amorphized during rapid quenching from a melt,” Phys. Met. Metallogr. 120, No. 2, 164–170 (2019).CrossRef
120.
Zurück zum Zitat V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperature shape memory effect,” Tech. Phys. 61, 1009–1014 (2016).CrossRef V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Hf alloys with a high-temperature shape memory effect,” Tech. Phys. 61, 1009–1014 (2016).CrossRef
121.
Zurück zum Zitat L. V. Spivak and I. V. Lunegov, “On the problem of the existence of crystallization nuclei in amorphous metal alloys,” Vestnik Permskogo Universiteta. Fizika, No. 2, 33–35 (2013). L. V. Spivak and I. V. Lunegov, “On the problem of the existence of crystallization nuclei in amorphous metal alloys,” Vestnik Permskogo Universiteta. Fizika, No. 2, 33–35 (2013).
122.
Zurück zum Zitat L. V. Spivak and A. V. Shelyakov, “Activation energy and thermal activation parameters of the crystallization process of rapidly quenched TiNi-based alloys,” Izv. RAN. Fiz. 73, No. 9, 1337–1339 (2008). L. V. Spivak and A. V. Shelyakov, “Activation energy and thermal activation parameters of the crystallization process of rapidly quenched TiNi-based alloys,” Izv. RAN. Fiz. 73, No. 9, 1337–1339 (2008).
123.
Zurück zum Zitat L. V. Spivak, D. I. Sidorov, and A. V. Shelyakov, “Differential calorimetry of crystallization processes during heating of rapidly quenched alloys Ti50Ni25Cu25 and Ti39.2Ni24.8Hf10Cu25,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 26–29 (2010). L. V. Spivak, D. I. Sidorov, and A. V. Shelyakov, “Differential calorimetry of crystallization processes during heating of rapidly quenched alloys Ti50Ni25Cu25 and Ti39.2Ni24.8Hf10Cu25,” Al’ternativnaya Energetika i Ekologiya (ISJAEE), No. 8, 26–29 (2010).
124.
Zurück zum Zitat Ch. Chui, Introduction to Wavelets (Mir, Moscow, 2001). Ch. Chui, Introduction to Wavelets (Mir, Moscow, 2001).
125.
Zurück zum Zitat A. A. Koronovskii and A. E. Khramov, Continuous Wavelet Analysis and its Applications (Fizmatlit, Moscow, 2003) [in Russian] A. A. Koronovskii and A. E. Khramov, Continuous Wavelet Analysis and its Applications (Fizmatlit, Moscow, 2003) [in Russian]
126.
Zurück zum Zitat M. E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, Berlin, 2011), p. 530.CrossRef M. E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, Berlin, 2011), p. 530.CrossRef
127.
Zurück zum Zitat W. Kurz and D. J. Fisher, Fundamentals of Solidification (Trans Tech Publications, Uetikon-Zuerich, 1998), 4th ed., p, 305. W. Kurz and D. J. Fisher, Fundamentals of Solidification (Trans Tech Publications, Uetikon-Zuerich, 1998), 4th ed., p, 305.
128.
Zurück zum Zitat L. V. Spivak, A. V. Shelyakov, and L. N. Malinina, “Features of the crystallization process of hydrogen-containing amorphous alloys based on the system TiNi–TiCu,” Vestnik Permskogo Un-Ta, No. 1, 102–105 (2010). L. V. Spivak, A. V. Shelyakov, and L. N. Malinina, “Features of the crystallization process of hydrogen-containing amorphous alloys based on the system TiNi–TiCu,” Vestnik Permskogo Un-Ta, No. 1, 102–105 (2010).
129.
Zurück zum Zitat L. V. Spivak and A. V. Shelyakov, " Crystallization processes in hydrogen-containing amorphous alloys based on TiNiCuHf systems,“ Vestnik Permskogo Un-ta, Fizika, No. 1, 107–110 (2010). L. V. Spivak and A. V. Shelyakov, " Crystallization processes in hydrogen-containing amorphous alloys based on TiNiCuHf systems,“ Vestnik Permskogo Un-ta, Fizika, No. 1, 107–110 (2010).
130.
Zurück zum Zitat L. V. Spivak, A. V. Shelyakov, and N. E. Shchepina, “General laws of the effect of hydrogen on the crystallization of amorphous alloys based on the quasi-binary TiNi–TiCu system,” Tech. Phys. 84, No. 2, 52–56 (2014). L. V. Spivak, A. V. Shelyakov, and N. E. Shchepina, “General laws of the effect of hydrogen on the crystallization of amorphous alloys based on the quasi-binary TiNi–TiCu system,” Tech. Phys. 84, No. 2, 52–56 (2014).
131.
Zurück zum Zitat E. Stepura, V. Rosenband, and A. Gany, “Investigation of high temperature self-propagating combustion synthesis of titanium hydride,” Third European Combustion Meeting; ECM 2007 (Crete, 2007), pp. 1–6. E. Stepura, V. Rosenband, and A. Gany, “Investigation of high temperature self-propagating combustion synthesis of titanium hydride,” Third European Combustion Meeting; ECM 2007 (Crete, 2007), pp. 1–6.
132.
Zurück zum Zitat B. Metijasevic-Lux, J. Banhart, S. Fiechter, O. Goerke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54, 1887–1900 (2006).CrossRef B. Metijasevic-Lux, J. Banhart, S. Fiechter, O. Goerke, and N. Wanderka, “Modification of titanium hydride for improved aluminum foam manufacture,” Acta Mater. 54, 1887–1900 (2006).CrossRef
133.
Zurück zum Zitat P. G. Berezhko, A. I. Tarasova, A. A. Kuznetsov, I. V. Anfilov, I. K. Kremzukov, and A. G. Leshchinskaya, “Hydrogenation of titanium and zirconium and thermal decomposition of their hydrides,” Al’ternativnaya Energetika I Ekologiya (ISJAEE), No. 11, 47–56 (2006). P. G. Berezhko, A. I. Tarasova, A. A. Kuznetsov, I. V. Anfilov, I. K. Kremzukov, and A. G. Leshchinskaya, “Hydrogenation of titanium and zirconium and thermal decomposition of their hydrides,” Al’ternativnaya Energetika I Ekologiya (ISJAEE), No. 11, 47–56 (2006).
134.
Zurück zum Zitat L. V. Spivak, “Calorimetric effects during heating of Pd–H alloys,” Al’Ternativnaya Energetika I Ekologiya (ISJAEE), No. 7, 103–110 (2010). L. V. Spivak, “Calorimetric effects during heating of Pd–H alloys,” Al’Ternativnaya Energetika I Ekologiya (ISJAEE), No. 7, 103–110 (2010).
135.
Zurück zum Zitat A. V. Luk’yanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, No. 4, 374–382 (2018).CrossRef A. V. Luk’yanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, No. 4, 374–382 (2018).CrossRef
136.
Zurück zum Zitat N. N. Kuranova, A. V. Pushin, V. G. Pushin, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Zr alloys with high-temperature shape memory effects,” Phys. Met. Metallogr. 119, No. 6, 582–588 (2018).CrossRef N. N. Kuranova, A. V. Pushin, V. G. Pushin, and N. I. Kourov, “Structure and thermoelastic martensitic transformations in ternary Ni–Ti–Zr alloys with high-temperature shape memory effects,” Phys. Met. Metallogr. 119, No. 6, 582–588 (2018).CrossRef
137.
Zurück zum Zitat A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, No. 12, 1159–1165 (2019).CrossRef A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, No. 12, 1159–1165 (2019).CrossRef
138.
Zurück zum Zitat V. G. Pushin, N. N. Kuranova, E. B. Marchenkova, and A. V. Pushin, “Deformation-induced atomic disordering and bcc → fcc transformation in Heusler alloy Ni54Mn21Ga25 subjected to megaplastic deformation by high pressure torsion,” Phys. Met. Metallogr. 121, No. 4, 300–336 (2020).CrossRef V. G. Pushin, N. N. Kuranova, E. B. Marchenkova, and A. V. Pushin, “Deformation-induced atomic disordering and bcc → fcc transformation in Heusler alloy Ni54Mn21Ga25 subjected to megaplastic deformation by high pressure torsion,” Phys. Met. Metallogr. 121, No. 4, 300–336 (2020).CrossRef
139.
Zurück zum Zitat E. B. Marchenkova, V. G. Pushin, V. A. Kazantsev, A. V. Korolev, N. I. Kourov, and A. V. Pushin, “Thermoelastic martensite transformations and the properties of ultrafine-grained Ni54Mn20Fe1Ga25 alloys obtained by melt quenching,” Phys. Met. Metallogr. 119, No. 10, 936–945 (2018).CrossRef E. B. Marchenkova, V. G. Pushin, V. A. Kazantsev, A. V. Korolev, N. I. Kourov, and A. V. Pushin, “Thermoelastic martensite transformations and the properties of ultrafine-grained Ni54Mn20Fe1Ga25 alloys obtained by melt quenching,” Phys. Met. Metallogr. 119, No. 10, 936–945 (2018).CrossRef
140.
Zurück zum Zitat E. A. Golovkova, A. V. Surkov, and G. F. Syrykh, “Crystallization of amorphous Zr-Be alloys,” Phys. Solid State 57, No. 2, 266–269 (2015).CrossRef E. A. Golovkova, A. V. Surkov, and G. F. Syrykh, “Crystallization of amorphous Zr-Be alloys,” Phys. Solid State 57, No. 2, 266–269 (2015).CrossRef
141.
Zurück zum Zitat V. I. Tkach, E. A. Sviridova, S. V. Vasil’ev, and O. V. Kovalenko, “Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients,” Phys. Met. Metallogr. 118, No. 8, 764–772 (2017).CrossRef V. I. Tkach, E. A. Sviridova, S. V. Vasil’ev, and O. V. Kovalenko, “Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients,” Phys. Met. Metallogr. 118, No. 8, 764–772 (2017).CrossRef
142.
Zurück zum Zitat O. V. Kovalenko, E. A. Sviridova, S. V. Vasil’ev, V. V. Burkhovetskii, and V. I. Tkach, “Effective diffusion coefficients and structure of metal glasses AL90Y10 and AL87NI8LA5 at temperatures of onset of crystallization,” Fiz. Tekh. Vys. Davlenii 27, No. 4, 79–92 (2017). O. V. Kovalenko, E. A. Sviridova, S. V. Vasil’ev, V. V. Burkhovetskii, and V. I. Tkach, “Effective diffusion coefficients and structure of metal glasses AL90Y10 and AL87NI8LA5 at temperatures of onset of crystallization,” Fiz. Tekh. Vys. Davlenii 27, No. 4, 79–92 (2017).
Metadaten
Titel
Calorimetric Effects in the Structural and Phase Transitions of Metals and Alloys
verfasst von
L. V. Spivak
N. E. Shchepina
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20100117

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe