Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of Iron and Silicon Impurities on Phase Composition and Mechanical Properties of Al–6.3Cu–3.2Y Alloy

verfasst von: S. M. Amer, R. Yu. Barkov, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Abstract–The effect of impurities of iron and silicon on the phase composition and mechanical properties of the Al–6.3Cu–3.2Y wrought aluminum alloy is investigated in this work. According to the results of X-ray diffraction of the cast alloy, the presence of Al8Cu4Y, (Al,Cu)11Y, Al2Cu, and AlCu phases was confirmed, and the presence of peaks that likely correspond to the Al11Cu2Y2Si2 phase was noted. Elongated needle-like inclusions of the Al11Cu2Y2Si2 phase, which does not change its morphology in the course of homogenization, appear against the background of the fragmented compact eutectic. At the temperatures of annealing of the deformed sheets up to 300°C, the structure of alloy is represented by grains elongated along the rolling direction and has a slightly higher hardness than the same alloy without impurities. This is caused by the presence of larger amount of sufficiently dispersed intermetallic particles in the structure. When increasing the annealing temperature, the difference in hardness between the considered alloys decreases. Recrystallization occurs starting from 350°С, the hardness of the alloys levels out. After annealings at 100 and 150°C, the studied alloy demonstrates a good level of strength characteristics, the conditional yield stress is 284–325 MPa, the conditional ultimate strength is 304–369 MPa, which is 20–30 MPa higher than in the alloy without impurities. In general, the presence of permanent impurities of iron and silicon in aluminum does not have a negative effect on the mechanical properties of the studied alloy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. I. Novikov, Hot Brittleness of Nonferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Nonferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
2.
Zurück zum Zitat D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).CrossRef D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).CrossRef
3.
Zurück zum Zitat V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys, Alcoa Technical Center (Alcoa Center, PA, 2007). V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys, Alcoa Technical Center (Alcoa Center, PA, 2007).
4.
Zurück zum Zitat ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Vol. 2 (The Materials Information Company, 2010). ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Vol. 2 (The Materials Information Company, 2010).
5.
Zurück zum Zitat V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).CrossRef V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).CrossRef
6.
Zurück zum Zitat V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).CrossRef
7.
Zurück zum Zitat T. Krachan, B. Stel’makhovych, and Yu. Kuz’ma, “The Y–Cu–Al system,” J. Alloys Compd. 349, 134–139 (2003).CrossRef T. Krachan, B. Stel’makhovych, and Yu. Kuz’ma, “The Y–Cu–Al system,” J. Alloys Compd. 349, 134–139 (2003).CrossRef
8.
Zurück zum Zitat L. Zhang, P. J. Masset, X. Tao, G. Huanga, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).CrossRef L. Zhang, P. J. Masset, X. Tao, G. Huanga, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).CrossRef
9.
Zurück zum Zitat L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).CrossRef L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).CrossRef
10.
Zurück zum Zitat L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).CrossRef L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).CrossRef
11.
Zurück zum Zitat A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).CrossRef
12.
Zurück zum Zitat A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).CrossRef
13.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020). S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020).
14.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
15.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020).CrossRef
16.
Zurück zum Zitat Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).CrossRef
17.
Zurück zum Zitat Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).CrossRef
18.
Zurück zum Zitat Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).CrossRef
19.
Zurück zum Zitat H. Gao, W. Feng, and Y. Wang, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact. 121, 195–198 (2016).CrossRef H. Gao, W. Feng, and Y. Wang, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact. 121, 195–198 (2016).CrossRef
20.
Zurück zum Zitat H. Gao, W. Feng, J. Gu, J. Wang, and B. Sun, “Aging and recrystallization behavior of precipitation strengthened Al–0.25Zr–0.03Y alloy,” J. Alloys Compd. 696, 1039–1045 (2017).CrossRef H. Gao, W. Feng, J. Gu, J. Wang, and B. Sun, “Aging and recrystallization behavior of precipitation strengthened Al–0.25Zr–0.03Y alloy,” J. Alloys Compd. 696, 1039–1045 (2017).CrossRef
21.
Zurück zum Zitat A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).CrossRef
22.
Zurück zum Zitat A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).CrossRef
23.
Zurück zum Zitat H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).CrossRef
24.
Zurück zum Zitat Y. Dongxi, L. Xiaoyan, H. Dingyong, and H. Hui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. Eng., A 561, 226–231 (2013).CrossRef Y. Dongxi, L. Xiaoyan, H. Dingyong, and H. Hui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. Eng., A 561, 226–231 (2013).CrossRef
25.
Zurück zum Zitat S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).CrossRef
26.
Zurück zum Zitat A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).CrossRef
27.
Zurück zum Zitat F. Cao, X. Zhu, S. Wang, Lu. Shi, G. Xu, and J. Wen, “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting-extrusion,” Mater. Sci. Eng., A 690, 433–445 (2017).CrossRef F. Cao, X. Zhu, S. Wang, Lu. Shi, G. Xu, and J. Wen, “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting-extrusion,” Mater. Sci. Eng., A 690, 433–445 (2017).CrossRef
28.
Zurück zum Zitat R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
29.
Zurück zum Zitat N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).CrossRef N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).CrossRef
30.
Zurück zum Zitat A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016).CrossRef A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016).CrossRef
31.
Zurück zum Zitat C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).CrossRef C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).CrossRef
32.
Zurück zum Zitat A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).CrossRef A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).CrossRef
33.
Zurück zum Zitat A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).CrossRef A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).CrossRef
34.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on phase composition and properties of Al–6% Cu–4.05% Er wrought alloy,” Phys. Met. Metallogr. 121, 1–5 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on phase composition and properties of Al–6% Cu–4.05% Er wrought alloy,” Phys. Met. Metallogr. 121, 1–5 (2020).CrossRef
Metadaten
Titel
Effect of Iron and Silicon Impurities on Phase Composition and Mechanical Properties of Al–6.3Cu–3.2Y Alloy
verfasst von
S. M. Amer
R. Yu. Barkov
A. V. Pozdniakov
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20090021

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe