Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of Ultra-Fast Heating Before Decarburizing Annealing on Structural Transformations and Properties of Commercial Fe–3% Si Alloy

verfasst von: A. A. Redikultsev, S. V. Akulov, L. S. Karenina, O. V. Pervushina, F. V. Mineev

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of ultra-fast (induction) heating of a commercial Fe–3% Si alloy strip (grain oriented electrical steel) at a rate of ~100°С/s on the magnetic properties of finished product is studied in this work. This heating is accomplished after cold rolling followed by recrystallizing decarburizing annealing. It is shown that, in parallel with a reference sample, the ultra-fast heating leads (1) after recrystallizing decarburizing annealing to an increase in the average ferrite grain and, within the near-surface layer, to an increase in the edge component of the {110}〈001〉 texture and decrease in the fraction of {111}〈112〉 component; (2) after the second cold rolling at the final stages of annealing before secondary recrystallization, to an increase in the sharpness of the {110}〈001〉 component; and (3) in the finished product, to a decrease in the average macrograin size by 1.5 times (from ~9 to ~6 mm) and a decrease in the average angle of deviation of easy magnetization axes 〈001〉 from the rolling direction from ~7° to ~6°. The magnetic properties of the studied material exceed those of the comparison metal in all cases. The effect of ultra-fast heating on the texture transformations in the alloy and the formation of the final properties are explained by different nucleation places of grains of different orientations upon primary recrystallization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. F. Tiunov, “On the influence of the nonuniformity of remagnetization of Fe–3% Si anisotropic electrical steel on magnetic loss in rotating magnetic fields,” Phys. Met. Metallogr. 119, no. 9, 825–830 (2018).CrossRef V. F. Tiunov, “On the influence of the nonuniformity of remagnetization of Fe–3% Si anisotropic electrical steel on magnetic loss in rotating magnetic fields,” Phys. Met. Metallogr. 119, no. 9, 825–830 (2018).CrossRef
2.
Zurück zum Zitat V. V. Gubernatorov, Yu. N. Dragoshanskii, and T. S. Sycheva, “Atomic ordering of soft magnetic Fe‒Si alloys and effect of thermomagnetic treatment,” Phys. Met. Metallogr. 120, no. 8, 723–728 (2019).CrossRef V. V. Gubernatorov, Yu. N. Dragoshanskii, and T. S. Sycheva, “Atomic ordering of soft magnetic Fe‒Si alloys and effect of thermomagnetic treatment,” Phys. Met. Metallogr. 120, no. 8, 723–728 (2019).CrossRef
3.
Zurück zum Zitat I. V. Gervas’eva, V. A. Milyutin, E. Binon, E. G. Volkova, and D. A. Shishkin, “Effect of heat treatment in an ultra-high magnetic field on the formation of structure and texture in Fe–Si alloys,” Phys. Met. Metallogr. 116, no. 2, 162–169 (2015).CrossRef I. V. Gervas’eva, V. A. Milyutin, E. Binon, E. G. Volkova, and D. A. Shishkin, “Effect of heat treatment in an ultra-high magnetic field on the formation of structure and texture in Fe–Si alloys,” Phys. Met. Metallogr. 116, no. 2, 162–169 (2015).CrossRef
4.
Zurück zum Zitat Q. Meng, J. Li, and H. Zheng, “High-efficiency fast-heating annealing of a cold-rolled dual-phase steel,” Mater. Des. 58, 194–197 (2014).CrossRef Q. Meng, J. Li, and H. Zheng, “High-efficiency fast-heating annealing of a cold-rolled dual-phase steel,” Mater. Des. 58, 194–197 (2014).CrossRef
5.
Zurück zum Zitat F. M. Cerda Castro, L. A. I. Kestens, A. Monsalve, and R. H. Petrov, “The effect of ultrafast heating in cold-rolled low carbon steel: recrystallization and texture evolution,” Metals 6, 288–302 (2016).CrossRef F. M. Cerda Castro, L. A. I. Kestens, A. Monsalve, and R. H. Petrov, “The effect of ultrafast heating in cold-rolled low carbon steel: recrystallization and texture evolution,” Metals 6, 288–302 (2016).CrossRef
6.
Zurück zum Zitat S. Papaefthymiou, V. Karamitros, and M. Bouzouni, “Ultrafast heating and initial microstructure effect on phase transformation evolution of a CrMo steel,” Metals 9, 72–86 (2019).CrossRef S. Papaefthymiou, V. Karamitros, and M. Bouzouni, “Ultrafast heating and initial microstructure effect on phase transformation evolution of a CrMo steel,” Metals 9, 72–86 (2019).CrossRef
7.
Zurück zum Zitat K. Kosuge, M. Itoh, S. Ueno, H. Hukazawa, and T. Yoshimura, U.S. Patent No. 5833768 (10 November 1998). K. Kosuge, M. Itoh, S. Ueno, H. Hukazawa, and T. Yoshimura, U.S. Patent No. 5833768 (10 November 1998).
8.
Zurück zum Zitat Y. Shingaki, T. Takamiya, T. Okubo, and K. Senda, U.S. Patent No. 2015/0007908 (08 January 2015). Y. Shingaki, T. Takamiya, T. Okubo, and K. Senda, U.S. Patent No. 2015/0007908 (08 January 2015).
9.
Zurück zum Zitat M. L. Lobanov, A. A. Redikul’tsev, and G. M. Rusakov, “Electrotechnical anisotropic steel. Part 1. History of development,” Met. Sci. Heat Treat. 53, 326–332 (2011).CrossRef M. L. Lobanov, A. A. Redikul’tsev, and G. M. Rusakov, “Electrotechnical anisotropic steel. Part 1. History of development,” Met. Sci. Heat Treat. 53, 326–332 (2011).CrossRef
10.
Zurück zum Zitat M. L. Lobanov, A. A. Redikul’tsev, and G. M. Rusakov, “Electrotechnical anisotropic steels. Part II. State-of-the-art,” Met. Sci. Heat Treat. 53, 355–359 (2011).CrossRef M. L. Lobanov, A. A. Redikul’tsev, and G. M. Rusakov, “Electrotechnical anisotropic steels. Part II. State-of-the-art,” Met. Sci. Heat Treat. 53, 355–359 (2011).CrossRef
11.
Zurück zum Zitat S. V. Akulov, A. A. Redikul’tsev, L. S. Karenina, B. V. Parshakov, and N. V. Mikhailov N.V, RU Patent 2637848 (07 December 2017). S. V. Akulov, A. A. Redikul’tsev, L. S. Karenina, B. V. Parshakov, and N. V. Mikhailov N.V, RU Patent 2637848 (07 December 2017).
12.
Zurück zum Zitat M. L. Lobanov, A. I. Gomzikov, A. I. Pyatygin, and S. V. Akulov, “Decarburizing annealing of technical alloy Fe–3% Si,” Met. Sci. Heat Treat. 47, 478–483 (2005).CrossRef M. L. Lobanov, A. I. Gomzikov, A. I. Pyatygin, and S. V. Akulov, “Decarburizing annealing of technical alloy Fe–3% Si,” Met. Sci. Heat Treat. 47, 478–483 (2005).CrossRef
13.
Zurück zum Zitat M. L. Lobanov and A. S. Yurovskikh, “Thermochemical treatment of anisotropic electrical steel,” Met. Sci. Heat Treat. 58, 667–673 (2016).CrossRef M. L. Lobanov and A. S. Yurovskikh, “Thermochemical treatment of anisotropic electrical steel,” Met. Sci. Heat Treat. 58, 667–673 (2016).CrossRef
14.
Zurück zum Zitat Y. Hayakawa, “Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel,” Sci. Technol. Adv. Mater. 18, no. 1, 480–497 (2017).CrossRef Y. Hayakawa, “Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel,” Sci. Technol. Adv. Mater. 18, no. 1, 480–497 (2017).CrossRef
15.
Zurück zum Zitat M. L. Lobanov, A. S. Yurovskikh, N. I. Kardonina, and G. M. Rusakov, Methods of Study of Textures in Materials: Tutorial (Izd-vo Ural. Un-ta, Yekaterinburg, 2014) [in Russian]. M. L. Lobanov, A. S. Yurovskikh, N. I. Kardonina, and G. M. Rusakov, Methods of Study of Textures in Materials: Tutorial (Izd-vo Ural. Un-ta, Yekaterinburg, 2014) [in Russian].
16.
Zurück zum Zitat J.-K. Kim, J. S. Woo, and S. K. Chang, “Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe–3% Si alloy,” J. Magn. Magn. Mater. 215–216, 162–164 (2000).CrossRef J.-K. Kim, J. S. Woo, and S. K. Chang, “Influence of annealing before cold rolling on the evolution of sharp Goss texture in Fe–3% Si alloy,” J. Magn. Magn. Mater. 215–216, 162–164 (2000).CrossRef
17.
Zurück zum Zitat M. A. Da Cunha and S. C. Paolinelli, “Effect of the annealing temperature on the structure and magnetic properties of 3% Si non-oriented steel,” J. Magn. Magn. Mater. 254–255, 379–381 (2003).CrossRef M. A. Da Cunha and S. C. Paolinelli, “Effect of the annealing temperature on the structure and magnetic properties of 3% Si non-oriented steel,” J. Magn. Magn. Mater. 254–255, 379–381 (2003).CrossRef
18.
Zurück zum Zitat N.-J. Park, H.-D. Joo, and J.-T. Park, “Evolution of goss orientation during thermal heating with different heating rate for primary recrystallization in grain-oriented electrical steel,” ISIJ Int. 53, no. 1, 125–130 (2013).CrossRef N.-J. Park, H.-D. Joo, and J.-T. Park, “Evolution of goss orientation during thermal heating with different heating rate for primary recrystallization in grain-oriented electrical steel,” ISIJ Int. 53, no. 1, 125–130 (2013).CrossRef
19.
Zurück zum Zitat P. Rodriguez-Calvillo, E. Leunis, T. Van De Putte, S. Jacobs, O. Zacek, and W. Saikaly, “Influence of initial heating during final high temperature annealing on the offset of primary and secondary recrystallization in Cu-bearing grain oriented electrical steels,” AIP Adv. 8, 047605-1–047605-7 (2018).CrossRef P. Rodriguez-Calvillo, E. Leunis, T. Van De Putte, S. Jacobs, O. Zacek, and W. Saikaly, “Influence of initial heating during final high temperature annealing on the offset of primary and secondary recrystallization in Cu-bearing grain oriented electrical steels,” AIP Adv. 8, 047605-1–047605-7 (2018).CrossRef
20.
Zurück zum Zitat H. Homma and B. Hutchinson, “The production mechanism of extensively sharp Goss orientation in HI–B material,” J. Magn. Magn. Mater. 254–255, 331–333 (2003).CrossRef H. Homma and B. Hutchinson, “The production mechanism of extensively sharp Goss orientation in HI–B material,” J. Magn. Magn. Mater. 254–255, 331–333 (2003).CrossRef
21.
Zurück zum Zitat K. Ushioda and W. B. Hutchinson, “Role of shear bands in annealing texture formation in 3% Si–Fe single crystals,” ISIJ Int. 29, 862–867 (1989).CrossRef K. Ushioda and W. B. Hutchinson, “Role of shear bands in annealing texture formation in 3% Si–Fe single crystals,” ISIJ Int. 29, 862–867 (1989).CrossRef
22.
Zurück zum Zitat D. Dorner, S. Zaefferer, and D. Raabe, “Retention of the Goss orientation between microbands during cold rolling of an Fe3% Si single crystal,” Acta Mater. 55, no. 7, 2519–2530 (2007).CrossRef D. Dorner, S. Zaefferer, and D. Raabe, “Retention of the Goss orientation between microbands during cold rolling of an Fe3% Si single crystal,” Acta Mater. 55, no. 7, 2519–2530 (2007).CrossRef
23.
Zurück zum Zitat G. M. Rusakov, M. L. Lobanov, A. A. Redikultsev, and I. V. Kagan, “Model of {110}[001] texture formation in shear bands during cold rolling of Fe–3 Pct Si alloy,” Metall. Mater. Trans. A 40, no. 5, 1023–1025 (2009).CrossRef G. M. Rusakov, M. L. Lobanov, A. A. Redikultsev, and I. V. Kagan, “Model of {110}[001] texture formation in shear bands during cold rolling of Fe–3 Pct Si alloy,” Metall. Mater. Trans. A 40, no. 5, 1023–1025 (2009).CrossRef
24.
Zurück zum Zitat J. Liu, Y. Sha, K. Hu, F. Zhang, and L. Zuo, “Formation of cube and goss texture after primary recrystallization in electrical steels,” Metall. Mater. Trans A 45, 134–138 (2014).CrossRef J. Liu, Y. Sha, K. Hu, F. Zhang, and L. Zuo, “Formation of cube and goss texture after primary recrystallization in electrical steels,” Metall. Mater. Trans A 45, 134–138 (2014).CrossRef
25.
Zurück zum Zitat V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian]. V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian].
26.
Zurück zum Zitat B. Hutchinson, D. Lindell, M. Nave, and A. Rollett, “Development of boundary misorientations during grain growth in silicon steels,” Mater. Sci. Forum 753, 311–316 (2013).CrossRef B. Hutchinson, D. Lindell, M. Nave, and A. Rollett, “Development of boundary misorientations during grain growth in silicon steels,” Mater. Sci. Forum 753, 311–316 (2013).CrossRef
27.
Zurück zum Zitat G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, and A. S. Belyaevskikh, “Special misorientations and textural heredity in the commercial alloy Fe–3% Si,” Phys. Met. Metallogr. 115, no. 8, 775–785 (2014).CrossRef G. M. Rusakov, M. L. Lobanov, A. A. Redikul’tsev, and A. S. Belyaevskikh, “Special misorientations and textural heredity in the commercial alloy Fe–3% Si,” Phys. Met. Metallogr. 115, no. 8, 775–785 (2014).CrossRef
Metadaten
Titel
Effect of Ultra-Fast Heating Before Decarburizing Annealing on Structural Transformations and Properties of Commercial Fe–3% Si Alloy
verfasst von
A. A. Redikultsev
S. V. Akulov
L. S. Karenina
O. V. Pervushina
F. V. Mineev
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20100099

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe