Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Magnetic Properties and High-Frequency Impedance of Nanocrystalline FeSiBNbCu Ribbons in a 300 to 723 K Temperature Range

verfasst von: D. A. Bukreev, M. S. Derevyanko, A. A. Moiseev, A. S. Kuz’mina, G. V. Kurlyandskaya, A. V. Semirov

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic properties and high-frequency impedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons are studied in a high-temperature range of 300 to 723 K. The exchange-coupled state of nanocrystallites was found to be destructed at a temperature of about 530 K, which is substantially lower than the Curie temperature of the amorphous phase that is close to 635 K. It was found that, at an ac frequency of above 5 MHz, the marked magnetoimpedance effect (more than 50% for the magneoimpedance ratio in the case of complete impedance) is observed over the whole temperature range under study. This similar behavior can be essential in designing special-purpose magnetic field sensors intended for high-temperature applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Fe based soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).CrossRef Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Fe based soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).CrossRef
2.
Zurück zum Zitat G. Herzer, “Grain structure and magnetism of nanocrystalline ferromagnets,” IEEE Trans. Magn. 25, 3327–3329 (1989).CrossRef G. Herzer, “Grain structure and magnetism of nanocrystalline ferromagnets,” IEEE Trans. Magn. 25, 3327–3329 (1989).CrossRef
3.
Zurück zum Zitat A. A. Glazer, N. M. Klejnerman, V. A. Lukshina, A. P. Potapov, and V. V. Serikov, “Thermomechanical treatment of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy,” Fiz. Met. Metalloved., No. 12, 56–61 (1991). A. A. Glazer, N. M. Klejnerman, V. A. Lukshina, A. P. Potapov, and V. V. Serikov, “Thermomechanical treatment of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy,” Fiz. Met. Metalloved., No. 12, 56–61 (1991).
4.
Zurück zum Zitat R. Alben, J. J. Becker, and M. C. Chi, “Random anisotropy in amorphous ferromagnets,” J. Appl. Phys. 49, 1653–1658 (1978).CrossRef R. Alben, J. J. Becker, and M. C. Chi, “Random anisotropy in amorphous ferromagnets,” J. Appl. Phys. 49, 1653–1658 (1978).CrossRef
5.
Zurück zum Zitat A. Hernando, M. Vázquez, T. Kulik, and C. Prados, “Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials,” Phys. Rev. B 51, 3581–3586 (1995).CrossRef A. Hernando, M. Vázquez, T. Kulik, and C. Prados, “Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials,” Phys. Rev. B 51, 3581–3586 (1995).CrossRef
6.
Zurück zum Zitat R. S. Iskhakov, S. V. Komogortsev, Z. M. Moroz, and E. E. Shalygina, “Characteristics of the magnetic microstructure of amorphous and nanocrystalline ferromagnets with a random anisotropy: Theoretical estimates and experiment,” J. Exp. Theor. Phys. Lett. 72, 603–607 (2000).CrossRef R. S. Iskhakov, S. V. Komogortsev, Z. M. Moroz, and E. E. Shalygina, “Characteristics of the magnetic microstructure of amorphous and nanocrystalline ferromagnets with a random anisotropy: Theoretical estimates and experiment,” J. Exp. Theor. Phys. Lett. 72, 603–607 (2000).CrossRef
7.
Zurück zum Zitat V. V. Serikov, N. M. Kleinerman, E. G. Volkova, V. A. Lukshina, A. P. Potapov, and A. V. Svalov, “Structure and magnetic properties of nanocrystalline FeCuNbSiB alloys after a thermomechanical treatment,” Phys. Met. Metallogr. 102, 268–273 (2006).CrossRef V. V. Serikov, N. M. Kleinerman, E. G. Volkova, V. A. Lukshina, A. P. Potapov, and A. V. Svalov, “Structure and magnetic properties of nanocrystalline FeCuNbSiB alloys after a thermomechanical treatment,” Phys. Met. Metallogr. 102, 268–273 (2006).CrossRef
8.
Zurück zum Zitat E. A. Stepanova, S. O. Volchkov, V. A. Lukshina, D. M. Khudyakova, A. Larranaga, and D. S. Neznakhin, “Magnetic and magnetoimpedance properties of rapidly quenched ribbons of modified alloys based on FINEMET,” J. Phys.: Conf. Ser. 1389, 012123 (2019). E. A. Stepanova, S. O. Volchkov, V. A. Lukshina, D. M. Khudyakova, A. Larranaga, and D. S. Neznakhin, “Magnetic and magnetoimpedance properties of rapidly quenched ribbons of modified alloys based on FINEMET,” J. Phys.: Conf. Ser. 1389, 012123 (2019).
9.
Zurück zum Zitat E. A. Mikhalitsyna, V. A. Kataev, A. Larrañaga, V. N. Lepalovskij, and G. V. Kurlyandskaya, “Nanocrystallization in FINEMET-type Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 thin films,” Materials (Basel) 13, 348 (2020).CrossRef E. A. Mikhalitsyna, V. A. Kataev, A. Larrañaga, V. N. Lepalovskij, and G. V. Kurlyandskaya, “Nanocrystallization in FINEMET-type Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 thin films,” Materials (Basel) 13, 348 (2020).CrossRef
10.
Zurück zum Zitat L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef
11.
Zurück zum Zitat A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997). A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).
12.
Zurück zum Zitat G. V. Kurlyandskaya, D. de Cos, and S. O. Volchkov, “Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review,” Russ. J. Nondestr. Test. 45, 377–398 (2009).CrossRef G. V. Kurlyandskaya, D. de Cos, and S. O. Volchkov, “Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review,” Russ. J. Nondestr. Test. 45, 377–398 (2009).CrossRef
13.
Zurück zum Zitat M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, and Y. Yoshizawa, “Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy,” Appl. Phys. Lett. 86, 1–3 (2005).CrossRef M. Ohnuma, K. Hono, T. Yanai, M. Nakano, H. Fukunaga, and Y. Yoshizawa, “Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy,” Appl. Phys. Lett. 86, 1–3 (2005).CrossRef
14.
Zurück zum Zitat V. A. Lukshina, N. V. Dmitrieva, E. G. Volkova, and D. A. Shishkin, “Structure of the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy nanocrystallized in the presence of tensile stresses,” Phys. Met. Metallogr. 120, 1145–1151 (2019).CrossRef V. A. Lukshina, N. V. Dmitrieva, E. G. Volkova, and D. A. Shishkin, “Structure of the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy nanocrystallized in the presence of tensile stresses,” Phys. Met. Metallogr. 120, 1145–1151 (2019).CrossRef
15.
Zurück zum Zitat M. Vazquez, G. V. Kurlyandskaya, J. M. Garcia-Beneytez, J. P. Sinnecker, J. M. Barandiaran, V. A. Lukshina, and A. P. Potapov, “Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy,” IEEE Trans. Magn. 35, 3358–3360. M. Vazquez, G. V. Kurlyandskaya, J. M. Garcia-Beneytez, J. P. Sinnecker, J. M. Barandiaran, V. A. Lukshina, and A. P. Potapov, “Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy,” IEEE Trans. Magn. 35, 3358–3360.
16.
Zurück zum Zitat A. V. Semirov, D. A. Bukreev, A. A. Moiseev, S. O. Volchkov, G. V. Kurlyandskaya, V. A. Lukshina, and E. G. Volkova, “Temperature dependences of magnetoimpedance of nanocrystalline Fe-based ribbons,” J. Nanosci. Nanotechnol. 12, 7446–7450 (2012).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, S. O. Volchkov, G. V. Kurlyandskaya, V. A. Lukshina, and E. G. Volkova, “Temperature dependences of magnetoimpedance of nanocrystalline Fe-based ribbons,” J. Nanosci. Nanotechnol. 12, 7446–7450 (2012).CrossRef
17.
Zurück zum Zitat G. Chen, X. L. Yang, L. Zeng, J. X. Yang, F. F. Gong, D. P. Yang, and Z. C. Wang, “High-temperature giant magnetoimpedance in Fe-based nanocrystalline alloy,” J. Appl. Phys. 87, 5263–5265 (2000).CrossRef G. Chen, X. L. Yang, L. Zeng, J. X. Yang, F. F. Gong, D. P. Yang, and Z. C. Wang, “High-temperature giant magnetoimpedance in Fe-based nanocrystalline alloy,” J. Appl. Phys. 87, 5263–5265 (2000).CrossRef
18.
Zurück zum Zitat M. Malátek, P. Ripka, and L. Kraus, “Temperature offset drift of GMI sensors,” Sens. Actuators, A 147, 415–418 (2008).CrossRef M. Malátek, P. Ripka, and L. Kraus, “Temperature offset drift of GMI sensors,” Sens. Actuators, A 147, 415–418 (2008).CrossRef
19.
Zurück zum Zitat J. Nabias, A. Asfour, and J.-P. Yonnet, “Temperature effect on GMI sensor: Comparison between diagonal and off-diagonal response,” Sens. Actuators, A 289, 50–56 (2019).CrossRef J. Nabias, A. Asfour, and J.-P. Yonnet, “Temperature effect on GMI sensor: Comparison between diagonal and off-diagonal response,” Sens. Actuators, A 289, 50–56 (2019).CrossRef
20.
Zurück zum Zitat A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2019).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2019).CrossRef
21.
Zurück zum Zitat L. Zeng, Z. J. Zhao, X. L. Yang, J. Z. Ruan, and G. Chen, “Observations of magnetic coupling in Fe-based nanocrystalline alloy by high-temperature giant magneto-impedance effect,” J. Magn. Magn. Mater. 246, 422–424 (2002).CrossRef L. Zeng, Z. J. Zhao, X. L. Yang, J. Z. Ruan, and G. Chen, “Observations of magnetic coupling in Fe-based nanocrystalline alloy by high-temperature giant magneto-impedance effect,” J. Magn. Magn. Mater. 246, 422–424 (2002).CrossRef
22.
Zurück zum Zitat A. Ślawska-Waniewska, M. Gutowski, H. K. Lachowicz, T. Kulik, and H. Matyja, “Superparamagnetism in a nanocrystalline Fe-based metallic glass,” Phys. Rev. B 46, 14594–14597 (1992).CrossRef A. Ślawska-Waniewska, M. Gutowski, H. K. Lachowicz, T. Kulik, and H. Matyja, “Superparamagnetism in a nanocrystalline Fe-based metallic glass,” Phys. Rev. B 46, 14594–14597 (1992).CrossRef
23.
Zurück zum Zitat Y. -C. Xu and Z. Wang, “Mechanism of improved high-temperature magnetic softness for Co-contained finemet alloy,” IEEE Trans. Magn. 51, 1–4 (2015). Y. -C. Xu and Z. Wang, “Mechanism of improved high-temperature magnetic softness for Co-contained finemet alloy,” IEEE Trans. Magn. 51, 1–4 (2015).
24.
Zurück zum Zitat A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko, “Automated measuring complex for magnetoimpedance spectroscopy of magnetically soft materials,” Nauchnoe Pribostroenie 20, No. 2, 42–45 (2010). A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko, “Automated measuring complex for magnetoimpedance spectroscopy of magnetically soft materials,” Nauchnoe Pribostroenie 20, No. 2, 42–45 (2010).
25.
Zurück zum Zitat R. S. Turtelli, V. H. Duong, R. Grossinger, M. Schwetz, E. Ferrara, and N. Pillmayr, “Contribution of the crystalline phase Fe100 – xSix to the temperature dependence of magnetic properties of FINEMET-type alloys,” IEEE Trans. Magn. 36, 508–512 (2000).CrossRef R. S. Turtelli, V. H. Duong, R. Grossinger, M. Schwetz, E. Ferrara, and N. Pillmayr, “Contribution of the crystalline phase Fe100 – xSix to the temperature dependence of magnetic properties of FINEMET-type alloys,” IEEE Trans. Magn. 36, 508–512 (2000).CrossRef
26.
Zurück zum Zitat G. Herzer, “Nanocrystalline soft magnetic alloys,” Handb. Magn. Mater. 415–462 (1997), Ch. 3. G. Herzer, “Nanocrystalline soft magnetic alloys,” Handb. Magn. Mater. 415–462 (1997), Ch. 3.
27.
Zurück zum Zitat L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Pergamon, New York, 1960). L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Pergamon, New York, 1960).
28.
Zurück zum Zitat L. Kraus, “Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy,” J. Magn. Magn. Mater. 195, 764–778 (1999).CrossRef L. Kraus, “Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy,” J. Magn. Magn. Mater. 195, 764–778 (1999).CrossRef
29.
Zurück zum Zitat A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).CrossRef
Metadaten
Titel
Magnetic Properties and High-Frequency Impedance of Nanocrystalline FeSiBNbCu Ribbons in a 300 to 723 K Temperature Range
verfasst von
D. A. Bukreev
M. S. Derevyanko
A. A. Moiseev
A. S. Kuz’mina
G. V. Kurlyandskaya
A. V. Semirov
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20100026

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe