Skip to main content
Erschienen in: Physics of Metals and Metallography 10/2020

01.10.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Highly Porous Superconductors: Synthesis, Research, and Prospects

verfasst von: D. M. Gokhfeld, M. R. Koblischka, A. Koblischka-Veneva

Erschienen in: Physics of Metals and Metallography | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a review of studies of superconductors with a porosity above 50%. The pores in such superconducting materials allow refrigerant penetration and provide efficient heat dissipation and stable operation. Methods for the synthesis of the main groups of porous superconductors are described. The results of studies of the structural, magnetic, and electrical transport properties are presented, and the features of the current flow through porous superconductors of various types are considered. The directions of further development and application of porous superconductors are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. K. Kwok, U. Welp, A. Glatz, A. E. Koshelev, K. J. Kihlstrom, and G. W. Crabtree, “Vortices in high-performance high-temperature superconductors,” Rep. Prog. Phys. 79, No. 11, 116501 (2016).CrossRef W. K. Kwok, U. Welp, A. Glatz, A. E. Koshelev, K. J. Kihlstrom, and G. W. Crabtree, “Vortices in high-performance high-temperature superconductors,” Rep. Prog. Phys. 79, No. 11, 116501 (2016).CrossRef
2.
Zurück zum Zitat A. P. Malozemoff, “Does the electric power grid need a room temperature superconductor?,” Phys. C 494, 1–4 (2013).CrossRef A. P. Malozemoff, “Does the electric power grid need a room temperature superconductor?,” Phys. C 494, 1–4 (2013).CrossRef
3.
Zurück zum Zitat E. P. Krasnoperov, V. S. Korotkov, and A. A. Kartamyshev, “Small-sized hybrid magnet with pulsed field magnetization,” J. Supercond. Novel Magn. 27, No. 8, 1845–1849 (2014).CrossRef E. P. Krasnoperov, V. S. Korotkov, and A. A. Kartamyshev, “Small-sized hybrid magnet with pulsed field magnetization,” J. Supercond. Novel Magn. 27, No. 8, 1845–1849 (2014).CrossRef
4.
Zurück zum Zitat J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y. H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom, and D. A. Cardwell, “A trapped field of 17.6 T in melt-processed, bulk Gd–Ba–Cu–O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27, No. 8 (2014). J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y. H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom, and D. A. Cardwell, “A trapped field of 17.6 T in melt-processed, bulk Gd–Ba–Cu–O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27, No. 8 (2014).
5.
Zurück zum Zitat J. H. Durrell, M. D. Ainslie, D. Zhou, P. Vanderbemden, T. Bradshaw, S. Speller, M. Filipenko, and D. A. Cardwell, “Bulk superconductors: a roadmap to applications,” Supercond. Sci. Technol. 31, No. 10, 103501 (2018).CrossRef J. H. Durrell, M. D. Ainslie, D. Zhou, P. Vanderbemden, T. Bradshaw, S. Speller, M. Filipenko, and D. A. Cardwell, “Bulk superconductors: a roadmap to applications,” Supercond. Sci. Technol. 31, No. 10, 103501 (2018).CrossRef
6.
Zurück zum Zitat A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys., 59, No. 4, 941–999 (1987).CrossRef A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys., 59, No. 4, 941–999 (1987).CrossRef
7.
Zurück zum Zitat V. S. Korotkov, E. P. Krasnoperov, and A. A. Kartamyshev, “Pulse heating and negative magnetic relaxation on bulk HTS annuli,” J. Supercond. Novel Magn. 28, No. 9, 2815–2819 (2015).CrossRef V. S. Korotkov, E. P. Krasnoperov, and A. A. Kartamyshev, “Pulse heating and negative magnetic relaxation on bulk HTS annuli,” J. Supercond. Novel Magn. 28, No. 9, 2815–2819 (2015).CrossRef
8.
Zurück zum Zitat I. Nettleship, “Applications of porous ceramics,” Key Eng. Mater. 122–124, 305–324 (1996).CrossRef I. Nettleship, “Applications of porous ceramics,” Key Eng. Mater. 122–124, 305–324 (1996).CrossRef
9.
Zurück zum Zitat F. A. L. Dullien, Porous Media.Fluid Transport and Pore Structure (Academic Press, 1992), p. 574. F. A. L. Dullien, Porous Media.Fluid Transport and Pore Structure (Academic Press, 1992), p. 574.
10.
Zurück zum Zitat A. P. Karnaukhov, Adsorbtsiya: Tekstura Dispersnykh I Poristykh Materialov (Nauka, SO RAN, 1999), p. 469. A. P. Karnaukhov, Adsorbtsiya: Tekstura Dispersnykh I Poristykh Materialov (Nauka, SO RAN, 1999), p. 469.
11.
Zurück zum Zitat K. Meyer, P. Lorenz, B. Bohl-Kuhn, and P. Klobes, “Porous solids and their characterization methods of investigation and application,” Cryst. Res. Technol. 29, No. 7, 903–930 (1994).CrossRef K. Meyer, P. Lorenz, B. Bohl-Kuhn, and P. Klobes, “Porous solids and their characterization methods of investigation and application,” Cryst. Res. Technol. 29, No. 7, 903–930 (1994).CrossRef
12.
Zurück zum Zitat M. R. Koblischka and A. Koblischka-Veneva, “Porous high-Tc superconductors and their applications,” AIMS Mater. Sci. 5, No. 6, 1199–1213 (2018).CrossRef M. R. Koblischka and A. Koblischka-Veneva, “Porous high-Tc superconductors and their applications,” AIMS Mater. Sci. 5, No. 6, 1199–1213 (2018).CrossRef
13.
Zurück zum Zitat E. S. Reddy and G. J. Schmitz, “Superconducting foams,” Supercond. Sci. Technol. 15, No. 8, 21–24 (2002).CrossRef E. S. Reddy and G. J. Schmitz, “Superconducting foams,” Supercond. Sci. Technol. 15, No. 8, 21–24 (2002).CrossRef
14.
Zurück zum Zitat M. D. Montminy, A. R. Tannenbaum, and C. W. MacOsko, “The 3D structure of real polymer foams,” J. Colloid Interface Sci. 280, No. 1, 202–211 (2004).CrossRef M. D. Montminy, A. R. Tannenbaum, and C. W. MacOsko, “The 3D structure of real polymer foams,” J. Colloid Interface Sci. 280, No. 1, 202–211 (2004).CrossRef
15.
Zurück zum Zitat S. O. Gladkov, “On the temperature dependence of the Lorentz number in a metallic inhomogeneous medium,” Phys. Met. Metallogr. 101, No. 3, 218–222 (2006).CrossRef S. O. Gladkov, “On the temperature dependence of the Lorentz number in a metallic inhomogeneous medium,” Phys. Met. Metallogr. 101, No. 3, 218–222 (2006).CrossRef
16.
Zurück zum Zitat W. Y. Jang, A. M. Kraynik, and S. Kyriakides, “On the microstructure of open-cell foams and its effect on elastic properties,” Int. J. Solids Struct. 45, nos. 7–8, 1845–1875 (2008).CrossRef W. Y. Jang, A. M. Kraynik, and S. Kyriakides, “On the microstructure of open-cell foams and its effect on elastic properties,” Int. J. Solids Struct. 45, nos. 7–8, 1845–1875 (2008).CrossRef
17.
Zurück zum Zitat M. Bai and J. N. Chung, “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams,” Int. J. Therm. Sci. 50, No. 6, 869–880 (2011).CrossRef M. Bai and J. N. Chung, “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams,” Int. J. Therm. Sci. 50, No. 6, 869–880 (2011).CrossRef
18.
Zurück zum Zitat T. Wejrzanowski, J. Skibinski, J. Szumbarski, and K. J. Kurzydlowski, “Structure of foams modeled by Laguerre-Voronoi tessellations,” Comput. Mater. Sci. 67, 216–221 (2013).CrossRef T. Wejrzanowski, J. Skibinski, J. Szumbarski, and K. J. Kurzydlowski, “Structure of foams modeled by Laguerre-Voronoi tessellations,” Comput. Mater. Sci. 67, 216–221 (2013).CrossRef
19.
Zurück zum Zitat L. Maheo, P. Viot, D. Bernard, A. Chirazi, G. Ceglia, V. Schmitt, and O. Mondain-Monval, “Elastic behavior of multi-scale, open-cell foams,” Composites, Part B 44, No. 1, 172–183 (2013).CrossRef L. Maheo, P. Viot, D. Bernard, A. Chirazi, G. Ceglia, V. Schmitt, and O. Mondain-Monval, “Elastic behavior of multi-scale, open-cell foams,” Composites, Part B 44, No. 1, 172–183 (2013).CrossRef
20.
Zurück zum Zitat M. Ambrosetti, M. Bracconi, G. Groppi, and E. Tronconi, “Analytical geometrical model of open cell foams with detailed description of strut-node intersection,” Chemie-Ingenieur-Technik 89, No. 7, 915–925 (2017).CrossRef M. Ambrosetti, M. Bracconi, G. Groppi, and E. Tronconi, “Analytical geometrical model of open cell foams with detailed description of strut-node intersection,” Chemie-Ingenieur-Technik 89, No. 7, 915–925 (2017).CrossRef
21.
Zurück zum Zitat Z. Nie, Y. Lin, and Q. Tong, “Modeling structures of open cell foams,” Comput. Mater. Sci. 131, 160–169 (2017).CrossRef Z. Nie, Y. Lin, and Q. Tong, “Modeling structures of open cell foams,” Comput. Mater. Sci. 131, 160–169 (2017).CrossRef
22.
Zurück zum Zitat M. Bracconi, M. Ambrosetti, M. Maestri, G. Groppi, and E. Tronconi, “A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams,” Chem. Eng. Process. Process Intensif. 129, 181–189 (2018).CrossRef M. Bracconi, M. Ambrosetti, M. Maestri, G. Groppi, and E. Tronconi, “A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams,” Chem. Eng. Process. Process Intensif. 129, 181–189 (2018).CrossRef
23.
Zurück zum Zitat H. Louati, T. Scheuermann, B. Maschke, M. L. Zanota, J. Vicente, P. Kotyczka, and I. Pitault, “Network-Based modeling of transport phenomena in solid and fluid phases of open-cell foams: construction of graphs,” Adv. Eng. Mater. 22, No. 5, 1901468 (2020).CrossRef H. Louati, T. Scheuermann, B. Maschke, M. L. Zanota, J. Vicente, P. Kotyczka, and I. Pitault, “Network-Based modeling of transport phenomena in solid and fluid phases of open-cell foams: construction of graphs,” Adv. Eng. Mater. 22, No. 5, 1901468 (2020).CrossRef
24.
Zurück zum Zitat V. V. Polyakov and V. A. Turetskii, “The effect of structure on electrical conductivity of porous pseudoalloys,” Phys. Met. Metallogr. 87, No. 3, 196–199 (1999). V. V. Polyakov and V. A. Turetskii, “The effect of structure on electrical conductivity of porous pseudoalloys,” Phys. Met. Metallogr. 87, No. 3, 196–199 (1999).
25.
Zurück zum Zitat R. Zallen, “Polychromatic percolation: Coexistence of percolating species in highly connected lattices,” Phys. Rev. B 16, No. 4, 1426–1435 (1977).CrossRef R. Zallen, “Polychromatic percolation: Coexistence of percolating species in highly connected lattices,” Phys. Rev. B 16, No. 4, 1426–1435 (1977).CrossRef
26.
Zurück zum Zitat M. A. Ioannidis, M. J. Kwiecien, and I. Chatzis, “Electrical conductivity and percolation aspects of statistically homogeneous porous media,” Transp. Porous Media 29, No. 1, 61–83 (1997).CrossRef M. A. Ioannidis, M. J. Kwiecien, and I. Chatzis, “Electrical conductivity and percolation aspects of statistically homogeneous porous media,” Transp. Porous Media 29, No. 1, 61–83 (1997).CrossRef
27.
Zurück zum Zitat D. A. Balaev, D. M. Gokhfeld, M. I. Petrov, S. I. Popkov, K. A. Shaikhutdinov, I. L. Belozerova, L. V. Kashkina, Yu. I. Kuzmin, and C. R. Michel, “Current-voltage characteristics of a foamed Bi1.8Pb0.3Sr2Ca2Cu3Ox high-temperature superconductor with fractal cluster structure,” Phys. Solid State 48, No. 2, 207–212 (2006).CrossRef D. A. Balaev, D. M. Gokhfeld, M. I. Petrov, S. I. Popkov, K. A. Shaikhutdinov, I. L. Belozerova, L. V. Kashkina, Yu. I. Kuzmin, and C. R. Michel, “Current-voltage characteristics of a foamed Bi1.8Pb0.3Sr2Ca2Cu3Ox high-temperature superconductor with fractal cluster structure,” Phys. Solid State 48, No. 2, 207–212 (2006).CrossRef
28.
Zurück zum Zitat M. Koblischka, S. Naik, A. Koblischka-Veneva, M. Murakami, D. Gokhfeld, E. Reddy, and G. Schmitz, “Superconducting YBCO Foams as Trapped Field Magnets,” Materials (Basel) 12, No. 6, 853 (2019).CrossRef M. Koblischka, S. Naik, A. Koblischka-Veneva, M. Murakami, D. Gokhfeld, E. Reddy, and G. Schmitz, “Superconducting YBCO Foams as Trapped Field Magnets,” Materials (Basel) 12, No. 6, 853 (2019).CrossRef
29.
Zurück zum Zitat E. Giion, K. D. Mitesku, Zh. P. Yulen, and S. Ru, “Fractals and percolation in porous medium,” Usp. Fiz. Nauk 161, No. 10, 121–128 (1991).CrossRef E. Giion, K. D. Mitesku, Zh. P. Yulen, and S. Ru, “Fractals and percolation in porous medium,” Usp. Fiz. Nauk 161, No. 10, 121–128 (1991).CrossRef
30.
Zurück zum Zitat B. Yu and J. Li, “Some fractal characters of porous media,” Fractals 9, No. 3, 365–372 (2001).CrossRef B. Yu and J. Li, “Some fractal characters of porous media,” Fractals 9, No. 3, 365–372 (2001).CrossRef
31.
Zurück zum Zitat M. Rieu and G. Sposito, “Fractal fragmentation, soil porosity, and soil water properties: I. Theory,” Soil Sci. Soc. Am. J. 55, No. 5, 1231–1238 (1991).CrossRef M. Rieu and G. Sposito, “Fractal fragmentation, soil porosity, and soil water properties: I. Theory,” Soil Sci. Soc. Am. J. 55, No. 5, 1231–1238 (1991).CrossRef
32.
Zurück zum Zitat P. M. Adler and J. F. Thovert, “Fractal porous media,” Transp. Porous Media. 13, No. 1, 41–78 (1993).CrossRef P. M. Adler and J. F. Thovert, “Fractal porous media,” Transp. Porous Media. 13, No. 1, 41–78 (1993).CrossRef
33.
Zurück zum Zitat P. M. Adler, “Transports in fractal porous media,” J. Hydrol. 187, Nos. 1–2, 195–213 (1996).CrossRef P. M. Adler, “Transports in fractal porous media,” J. Hydrol. 187, Nos. 1–2, 195–213 (1996).CrossRef
34.
Zurück zum Zitat A. G. Hunt, “Percolative transport in fractal porous media,” Chaos, Solitons Fractals. 19, No. 2, 309–325 (2004).CrossRef A. G. Hunt, “Percolative transport in fractal porous media,” Chaos, Solitons Fractals. 19, No. 2, 309–325 (2004).CrossRef
35.
Zurück zum Zitat B. Yu, J. Cai, and M. Zou, “On the physical properties of apparent two-phase fractal porous media,” Vadose Zo. J. 8, No. 1, 177–186 (2009).CrossRef B. Yu, J. Cai, and M. Zou, “On the physical properties of apparent two-phase fractal porous media,” Vadose Zo. J. 8, No. 1, 177–186 (2009).CrossRef
36.
Zurück zum Zitat A. Emmerling and J. Fricke, “Scaling properties and structure of aerogels,” J. Sol-Gel Sci. Technol. 8, No. 1/2/3, 781–788 (1997). A. Emmerling and J. Fricke, “Scaling properties and structure of aerogels,” J. Sol-Gel Sci. Technol. 8, No. 1/2/3, 781–788 (1997).
37.
Zurück zum Zitat Yu. I. Kuz’min, “Features of the resistive transition of fractal superconducting structures,” Pis’ma Zh. Tekh. Fiz. 29, No. 10, 36–44 (2003). Yu. I. Kuz’min, “Features of the resistive transition of fractal superconducting structures,” Pis’ma Zh. Tekh. Fiz. 29, No. 10, 36–44 (2003).
38.
Zurück zum Zitat Y. I. Kuzmin, “Dynamics of the magnetic flux trapped in fractal clusters of a normal phase in percolative superconductors,” J. Low Temp. Phys. 130, Nos. 3–4, 261–286 (2003).CrossRef Y. I. Kuzmin, “Dynamics of the magnetic flux trapped in fractal clusters of a normal phase in percolative superconductors,” J. Low Temp. Phys. 130, Nos. 3–4, 261–286 (2003).CrossRef
39.
Zurück zum Zitat E. Bartolomé, X. Granados, T. Puig, X. Obradors, E. S. Reddy, and G. J. Schmitz, “Critical state in superconducting single-crystalline YBa2Cu3O7 foams: Local versus long-range currents,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, No. 14, 144514 (2004).CrossRef E. Bartolomé, X. Granados, T. Puig, X. Obradors, E. S. Reddy, and G. J. Schmitz, “Critical state in superconducting single-crystalline YBa2Cu3O7 foams: Local versus long-range currents,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, No. 14, 144514 (2004).CrossRef
40.
Zurück zum Zitat E. Bartolomé, F. Gömory, X. Granados, T. Puig, and X. Obradors, “Universal correlation between critical current density and normal-state resistivity in porous YBa2Cu3O7 – x thin films,” Supercond. Sci. Technol. 20, No. 10, 895 (2007).CrossRef E. Bartolomé, F. Gömory, X. Granados, T. Puig, and X. Obradors, “Universal correlation between critical current density and normal-state resistivity in porous YBa2Cu3O7 – x thin films,” Supercond. Sci. Technol. 20, No. 10, 895 (2007).CrossRef
41.
Zurück zum Zitat A. A. Bykov, K. Yu. Terent’ev, D. M. Gokhfel’d, and M. I. Petrov, “Fractal dimension of cluster boundaries in porous polycrystalline HTSC materials,” Phys. Solid State 54, No. 10, 1947–1950 (2012).CrossRef A. A. Bykov, K. Yu. Terent’ev, D. M. Gokhfel’d, and M. I. Petrov, “Fractal dimension of cluster boundaries in porous polycrystalline HTSC materials,” Phys. Solid State 54, No. 10, 1947–1950 (2012).CrossRef
42.
Zurück zum Zitat J. R. Clem and V. G. Kogan, “Theory of the magnetization of granular superconductors: Application to high-Tc superconductors,” Jpn. J. Appl. Phys. 26, No. S3-2, 1161 (1987). J. R. Clem and V. G. Kogan, “Theory of the magnetization of granular superconductors: Application to high-Tc superconductors,” Jpn. J. Appl. Phys. 26, No. S3-2, 1161 (1987).
43.
Zurück zum Zitat J. R. Clem, “Granular and superconducting-glass properties of the high-temperature superconductors,” Phys. C 153–155, 50–55 (1988).CrossRef J. R. Clem, “Granular and superconducting-glass properties of the high-temperature superconductors,” Phys. C 153155, 50–55 (1988).CrossRef
44.
Zurück zum Zitat S. Senoussi, “Review of the critical current densities and magnetic irreversibilities in high Tc superconductors,” J. Phys. III. 2, No. 7, 1041–1257 (1992). S. Senoussi, “Review of the critical current densities and magnetic irreversibilities in high Tc superconductors,” J. Phys. III. 2, No. 7, 1041–1257 (1992).
45.
Zurück zum Zitat L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, “Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors,” Phys. Rev. B 47, No. 1, 470–483 (1993).CrossRef L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, “Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors,” Phys. Rev. B 47, No. 1, 470–483 (1993).CrossRef
46.
Zurück zum Zitat Y. Noguchi, S. Ohara, B. Huybrechts, and M. Takata, “Effect of intragrain current on low-field magnetic-flux distributions of zero-field-cooled polycrystalline YBa2Cu3O7 – δ,” J. Appl. Phys. 78, No. 9, 5540–5544 (1995).CrossRef Y. Noguchi, S. Ohara, B. Huybrechts, and M. Takata, “Effect of intragrain current on low-field magnetic-flux distributions of zero-field-cooled polycrystalline YBa2Cu3O7 – δ,” J. Appl. Phys. 78, No. 9, 5540–5544 (1995).CrossRef
47.
Zurück zum Zitat M. Mahel’ and J. Pivarč, “Magnetic hysteresis in high-temperature cuprates,” Phys. C 308, Nos. 1–2, 147–160 (1998).CrossRef M. Mahel’ and J. Pivarč, “Magnetic hysteresis in high-temperature cuprates,” Phys. C 308, Nos. 1–2, 147–160 (1998).CrossRef
48.
Zurück zum Zitat V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, “Effect of the temperature, external magnetic field, and transport current on electrical properties, vortex structure evolution processes, and phase transitions in subsystems of superconducting grains and "weak links” of granular two-level high-temperature superconductor YBa2Cu3O7–δ,” Phys. Solid State 60, No. 3, 470–480 (2018).CrossRef V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, “Effect of the temperature, external magnetic field, and transport current on electrical properties, vortex structure evolution processes, and phase transitions in subsystems of superconducting grains and "weak links” of granular two-level high-temperature superconductor YBa2Cu3O7–δ,” Phys. Solid State 60, No. 3, 470–480 (2018).CrossRef
49.
Zurück zum Zitat S. L. Ginzburg and N. E. Savitskaya, “Self-organization of the critical state in granular superconductors,” J. Exp. Theor. Phys. 117, No. 1, 202–216 (2000).CrossRef S. L. Ginzburg and N. E. Savitskaya, “Self-organization of the critical state in granular superconductors,” J. Exp. Theor. Phys. 117, No. 1, 202–216 (2000).CrossRef
50.
Zurück zum Zitat N. D. Kuz’michev, “ Critical state of Josephson medium,” JETP Lett. 74, No. 5, 262–266 (2001).CrossRef N. D. Kuz’michev, “ Critical state of Josephson medium,” JETP Lett. 74, No. 5, 262–266 (2001).CrossRef
51.
Zurück zum Zitat S. L. Ginzburg and N. E. Savitskaya, “Granular superconductors and a sandpile model with intrinsic spatial randomness,” Phys. Rev. E 66, No. 2, 026128 (2002).CrossRef S. L. Ginzburg and N. E. Savitskaya, “Granular superconductors and a sandpile model with intrinsic spatial randomness,” Phys. Rev. E 66, No. 2, 026128 (2002).CrossRef
52.
Zurück zum Zitat M. Turchinskaya, D. L. Kaiser, F. W. Gayle, A. J. Shapiro, A. Roytburd, L. A. Dorosinskii, V. I. Nikitenko, A. A. Polyanskii, and V. K. Vlasko-Vlasov, “Real-time observation of the effect of grain boundaries on magnetization of YBa2Cu3O7 – x polycrystals,” Phys. C 221, Nos. 1–2, 62–70 (1994).CrossRef M. Turchinskaya, D. L. Kaiser, F. W. Gayle, A. J. Shapiro, A. Roytburd, L. A. Dorosinskii, V. I. Nikitenko, A. A. Polyanskii, and V. K. Vlasko-Vlasov, “Real-time observation of the effect of grain boundaries on magnetization of YBa2Cu3O7 – x polycrystals,” Phys. C 221, Nos. 1–2, 62–70 (1994).CrossRef
53.
Zurück zum Zitat I. L. Landau, J. B. Willems, and J. Hulliger, “Detailed magnetization study of superconducting properties of YBa2Cu3O7 – x ceramic spheres,” J. Phys.: Condens. Matter 20, No. 9, 095222 (2008). I. L. Landau, J. B. Willems, and J. Hulliger, “Detailed magnetization study of superconducting properties of YBa2Cu3O7 – x ceramic spheres,” J. Phys.: Condens. Matter 20, No. 9, 095222 (2008).
54.
Zurück zum Zitat G. Wang, M. J. Raine, and D. P. Hampshire, “How resistive must grain boundaries in polycrystalline superconductors be, to limit Jc?,” Supercond. Sci. Technol. 30, No. 10, 104001 (2017).CrossRef G. Wang, M. J. Raine, and D. P. Hampshire, “How resistive must grain boundaries in polycrystalline superconductors be, to limit Jc?,” Supercond. Sci. Technol. 30, No. 10, 104001 (2017).CrossRef
55.
Zurück zum Zitat J. Horvat, S. Soltanian, A. V. Pan, and X. L. Wang, “Superconducting screening on different length scales in high-quality bulk MgB2 superconductor,” J. Appl. Phys. 96, No. 8, 4342–4351 (2004).CrossRef J. Horvat, S. Soltanian, A. V. Pan, and X. L. Wang, “Superconducting screening on different length scales in high-quality bulk MgB2 superconductor,” J. Appl. Phys. 96, No. 8, 4342–4351 (2004).CrossRef
56.
Zurück zum Zitat A. A. Bykov, K. Yu. Terent’ev, D. M. Gokhfeld, N. E. Savitskaya, S. I. Popkov, and M. I. Petrov, “Superconductivity on interfaces of nonsuperconducting granules La2CuO4 and La1.56Sr0.44CuO4,” J. Supercond. Novel Magn. 31, No. 12, 3867–3874 (2018).CrossRef A. A. Bykov, K. Yu. Terent’ev, D. M. Gokhfeld, N. E. Savitskaya, S. I. Popkov, and M. I. Petrov, “Superconductivity on interfaces of nonsuperconducting granules La2CuO4 and La1.56Sr0.44CuO4,” J. Supercond. Novel Magn. 31, No. 12, 3867–3874 (2018).CrossRef
57.
Zurück zum Zitat A. A. Bykov, D. M. Gokhfeld, N. E. Savitskaya, K. Yu. Terentjev, S. I. Popkov, A. A. Mistonov, N. A. Grigoryeva, A. Zakhidov, and S. V. Grigoriev, “Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals,” Supercond. Sci. Technol. 32, No. 11, 115004 (2019).CrossRef A. A. Bykov, D. M. Gokhfeld, N. E. Savitskaya, K. Yu. Terentjev, S. I. Popkov, A. A. Mistonov, N. A. Grigoryeva, A. Zakhidov, and S. V. Grigoriev, “Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals,” Supercond. Sci. Technol. 32, No. 11, 115004 (2019).CrossRef
58.
Zurück zum Zitat M. Zehetmayer, “Simulation of the current dynamics in superconductors: Application to magnetometry measurements,” Phys. Rev. B 80, No. 10, 104512 (2009).CrossRef M. Zehetmayer, “Simulation of the current dynamics in superconductors: Application to magnetometry measurements,” Phys. Rev. B 80, No. 10, 104512 (2009).CrossRef
59.
Zurück zum Zitat M. A. Angadi, A. D. Caplin, J. R. Laverty, and Z. X. Shen, “Non-destructive determination of the current-carrying length scale in superconducting crystals and thin films,” Phys. C 177, Nos. 4–6, 479–486 (2009).CrossRef M. A. Angadi, A. D. Caplin, J. R. Laverty, and Z. X. Shen, “Non-destructive determination of the current-carrying length scale in superconducting crystals and thin films,” Phys. C 177, Nos. 4–6, 479–486 (2009).CrossRef
60.
Zurück zum Zitat D. M. Gokhfel’d, “Circulation radius and critical current density in type II superconductors,” Pis’ma Zh. Tekh. Fiz. 45, No. 2, 3–5 (2019). D. M. Gokhfel’d, “Circulation radius and critical current density in type II superconductors,” Pis’ma Zh. Tekh. Fiz. 45, No. 2, 3–5 (2019).
61.
Zurück zum Zitat E. S. Reddy, N. H. Babu, Y. Shi, D. A. Cardwell, and G. J. Schmitz, “Processing of large grain Y-123 superconductors with pre-defined porous structures,” Supercond. Sci. Technol. 18, No. 2, S15 (2005).CrossRef E. S. Reddy, N. H. Babu, Y. Shi, D. A. Cardwell, and G. J. Schmitz, “Processing of large grain Y-123 superconductors with pre-defined porous structures,” Supercond. Sci. Technol. 18, No. 2, S15 (2005).CrossRef
62.
Zurück zum Zitat E. S. Reddy, M. Herweg, and G. J. Schmitz, “Processing of Y2BaCuO5 foams,” Supercond. Sci. Technol. 16, No. 5, 608 (2003).CrossRef E. S. Reddy, M. Herweg, and G. J. Schmitz, “Processing of Y2BaCuO5 foams,” Supercond. Sci. Technol. 16, No. 5, 608 (2003).CrossRef
63.
Zurück zum Zitat E. S. Reddy, J. G. Noudem, M. Tarka, and G. J. Schmitz, “Single-domain YBa2Cu3Oy thick films and fabrics prepared by an infiltration and growth process,” J. Mater. Res. 16, No. 4, 955–966 (2001).CrossRef E. S. Reddy, J. G. Noudem, M. Tarka, and G. J. Schmitz, “Single-domain YBa2Cu3Oy thick films and fabrics prepared by an infiltration and growth process,” J. Mater. Res. 16, No. 4, 955–966 (2001).CrossRef
64.
Zurück zum Zitat M. I. Petrov, T. N. Tetyueva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and S. G. Ovchinnikov, “Synthesis, microstructure, transport and magnetic properties of bismuth HTSC with a porous structure,” Pis’ma Zh. Tekh. Fiz. 29, No. 23, 40–45 (2003). M. I. Petrov, T. N. Tetyueva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and S. G. Ovchinnikov, “Synthesis, microstructure, transport and magnetic properties of bismuth HTSC with a porous structure,” Pis’ma Zh. Tekh. Fiz. 29, No. 23, 40–45 (2003).
65.
Zurück zum Zitat M. I. Petrov, T. N. Tetyeva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, and S. G. Ovchinnikov, “The synthesis, microstructure, transport and magnetic properties of Bi-based low density HTSC,” J. Mater. Process. Technol. 161, Nos. 1–2, 58–61 (2005).CrossRef M. I. Petrov, T. N. Tetyeva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, and S. G. Ovchinnikov, “The synthesis, microstructure, transport and magnetic properties of Bi-based low density HTSC,” J. Mater. Process. Technol. 161, Nos. 1–2, 58–61 (2005).CrossRef
66.
Zurück zum Zitat V. S. Kravchenko, M. A. Zhuravleva, E. M. Uskov, P. P. Bezverkhii, N. A. Bogolyubov, O. G. Potapova, and L. L. Makarshin, “Effect of excess Ca and Cu or Ca and Pb on the superconducting and electrical properties of Bi-2223 ceramics,” Inorg. Mater. 34, No. 10, 1074–1079 (1998). V. S. Kravchenko, M. A. Zhuravleva, E. M. Uskov, P. P. Bezverkhii, N. A. Bogolyubov, O. G. Potapova, and L. L. Makarshin, “Effect of excess Ca and Cu or Ca and Pb on the superconducting and electrical properties of Bi-2223 ceramics,” Inorg. Mater. 34, No. 10, 1074–1079 (1998).
67.
Zurück zum Zitat E. P. Krasnoperov, V. A. Stoliarov, A. A. Bush, and B. P. Mikhajlov, “Superconductivity in porous MgB2,” Solid State Commun. 138, No. 9, 461–465 (2006).CrossRef E. P. Krasnoperov, V. A. Stoliarov, A. A. Bush, and B. P. Mikhajlov, “Superconductivity in porous MgB2,” Solid State Commun. 138, No. 9, 461–465 (2006).CrossRef
68.
Zurück zum Zitat V. A. Grinenko, E. P. Krasnoperov, and B. P. Mikhailov, “Superconducting cellular MgB2,” Phys. Met. Metallogr. 103, No. 6, 561–565 (2007).CrossRef V. A. Grinenko, E. P. Krasnoperov, and B. P. Mikhailov, “Superconducting cellular MgB2,” Phys. Met. Metallogr. 103, No. 6, 561–565 (2007).CrossRef
69.
Zurück zum Zitat P. Fiertek and W. Sadowski, “Processing of the Porous Structures of the YBa2Cu3O7 – δ high temperature superconductor,” Mater. Sci.-Pol. 24, No. 4 (2006). P. Fiertek and W. Sadowski, “Processing of the Porous Structures of the YBa2Cu3O7 – δ high temperature superconductor,” Mater. Sci.-Pol. 24, No. 4 (2006).
70.
Zurück zum Zitat P. Fiertek, B. Andrzejewski, and W. Sadowski, “Synthesis and transport properties of porous superconducting ceramics of YBa2Cu3O7 – δ,” Rev. Adv. Mater. Sci. 23, No. 1, 52–56 (2010). P. Fiertek, B. Andrzejewski, and W. Sadowski, “Synthesis and transport properties of porous superconducting ceramics of YBa2Cu3O7 – δ,” Rev. Adv. Mater. Sci. 23, No. 1, 52–56 (2010).
71.
Zurück zum Zitat D. Walsh, S. C. Wimbush, and S. R. Hall, “Use of the polysaccharide dextran as a morphological directing agent in the synthesis of high-Tc superconducting YBa2Cu3O7 – δ sponges with improved critical current densities,” Chem. Mater. 19, No. 4, 647–649 (2007).CrossRef D. Walsh, S. C. Wimbush, and S. R. Hall, “Use of the polysaccharide dextran as a morphological directing agent in the synthesis of high-Tc superconducting YBa2Cu3O7 – δ sponges with improved critical current densities,” Chem. Mater. 19, No. 4, 647–649 (2007).CrossRef
72.
Zurück zum Zitat D. Walsh, S. C. Wimbush, and S. R. Hall, “Improved critical current densities and compressive strength in porous superconducting structures containing calcium,” J. Phys. 97, No. 1, 012003 (2008). D. Walsh, S. C. Wimbush, and S. R. Hall, “Improved critical current densities and compressive strength in porous superconducting structures containing calcium,” J. Phys. 97, No. 1, 012003 (2008).
73.
Zurück zum Zitat D. Walsh, S. C. Wimbush, and S. R. Hall, “Reticulated superconducting YBCO materials of designed macromorphologies with enhanced structural stability through incorporation of lithium,” Supercond. Sci. Technol. 22, No. 1, 015026 (2009).CrossRef D. Walsh, S. C. Wimbush, and S. R. Hall, “Reticulated superconducting YBCO materials of designed macromorphologies with enhanced structural stability through incorporation of lithium,” Supercond. Sci. Technol. 22, No. 1, 015026 (2009).CrossRef
74.
Zurück zum Zitat J. Dedman, S. C. Wimbush, and S. R. Hall, Biopolymer mediated sol-gel synthesis of LuBa2Cu3O7 – δ,” Physica C 470, 237–238 (2010).CrossRef J. Dedman, S. C. Wimbush, and S. R. Hall, Biopolymer mediated sol-gel synthesis of LuBa2Cu3O7 – δ,” Physica C 470, 237–238 (2010).CrossRef
75.
Zurück zum Zitat S. C. Wimbush, D. Walsh, and S. R. Hall, “Synthesis and characterization of BaZrO3-doped YBa2Cu3O7 – δ microtapes with improved critical current densities,” Phys. C 470, Nos. 7–8, 373–377 (2010).CrossRef S. C. Wimbush, D. Walsh, and S. R. Hall, “Synthesis and characterization of BaZrO3-doped YBa2Cu3O7 – δ microtapes with improved critical current densities,” Phys. C 470, Nos. 7–8, 373–377 (2010).CrossRef
76.
Zurück zum Zitat Z. Zhang, S. C. Wimbush, A. Kursumovic, H. Suo, and J. L. MacManus-Driscoll, “Detailed study of the process of biomimetic formation of YBCO platelets from nitrate salts in the presence of the biopolymer dextran and a molten NaCl flux,” Cryst. Growth Des. 12, No. 11, 5635–5642 (2012).CrossRef Z. Zhang, S. C. Wimbush, A. Kursumovic, H. Suo, and J. L. MacManus-Driscoll, “Detailed study of the process of biomimetic formation of YBCO platelets from nitrate salts in the presence of the biopolymer dextran and a molten NaCl flux,” Cryst. Growth Des. 12, No. 11, 5635–5642 (2012).CrossRef
77.
Zurück zum Zitat Z. Zhang, S. C. Wimbush, A. Kursumovic, H. Suo, and J. L. MacManus-Driscoll, “Role of the organic matrix in the biopolymer-mediated synthesis of platelike YBCO,” Adv. Mater. Res. 699, 268–272 (2013).CrossRef Z. Zhang, S. C. Wimbush, A. Kursumovic, H. Suo, and J. L. MacManus-Driscoll, “Role of the organic matrix in the biopolymer-mediated synthesis of platelike YBCO,” Adv. Mater. Res. 699, 268–272 (2013).CrossRef
78.
Zurück zum Zitat Z. L. Zhang, H. Suo, L. Ma, A. Kursumovic, M. Liu, Y. Wang, J. L. MacManus-Driscoll, and S. C. Wimbush, “The effect of different salt additions on the microstructure of YBCO synthesized by a biomimetic method,” Adv. Mater. Res. 887–888, 614–618 (2014).CrossRef Z. L. Zhang, H. Suo, L. Ma, A. Kursumovic, M. Liu, Y. Wang, J. L. MacManus-Driscoll, and S. C. Wimbush, “The effect of different salt additions on the microstructure of YBCO synthesized by a biomimetic method,” Adv. Mater. Res. 887888, 614–618 (2014).CrossRef
79.
Zurück zum Zitat S. R. Hall, “Biomimetic synthesis of high-Tc, type-ii superconductor nanowires,” Adv. Mater. 18, No. 4, 487–490 (2006).CrossRef S. R. Hall, “Biomimetic synthesis of high-Tc, type-ii superconductor nanowires,” Adv. Mater. 18, No. 4, 487–490 (2006).CrossRef
80.
Zurück zum Zitat E. Culverwell, S. C. Wimbush, and S. R. Hall, “Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template,” Chem. Commun., No. 9, 1055–1057 (2008). E. Culverwell, S. C. Wimbush, and S. R. Hall, “Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template,” Chem. Commun., No. 9, 1055–1057 (2008).
81.
Zurück zum Zitat R. Boston, A. Bell, V. P. Ting, A. T. Rhead, T. Nakayama, C. F. J. Faul, and S. R. Hall, “Graphene oxide as a template for a complex functional oxide,” CrystEngComm 17, No. 32, 6094–6097 (2015).CrossRef R. Boston, A. Bell, V. P. Ting, A. T. Rhead, T. Nakayama, C. F. J. Faul, and S. R. Hall, “Graphene oxide as a template for a complex functional oxide,” CrystEngComm 17, No. 32, 6094–6097 (2015).CrossRef
82.
Zurück zum Zitat Z. A. C. Schnepp, S. C. Wimbush, S. Mann, and S. R. Hall, “Structural evolution of superconductor nanowires in biopolymer gels,” Adv. Mater. 20, No. 9, 1782–1786 (2008).CrossRef Z. A. C. Schnepp, S. C. Wimbush, S. Mann, and S. R. Hall, “Structural evolution of superconductor nanowires in biopolymer gels,” Adv. Mater. 20, No. 9, 1782–1786 (2008).CrossRef
83.
Zurück zum Zitat S. R. Hall, S. C. Wimbush, Y. Shida, and W. Ogasawara, “Biotemplated synthesis of superconducting plate-like YBa2Cu3O7 – δ using oligosaccharides,” Chem. Phys. Lett. 507, Nos. 1–3, 144–150 (2011).CrossRef S. R. Hall, S. C. Wimbush, Y. Shida, and W. Ogasawara, “Biotemplated synthesis of superconducting plate-like YBa2Cu3O7 – δ using oligosaccharides,” Chem. Phys. Lett. 507, Nos. 1–3, 144–150 (2011).CrossRef
84.
Zurück zum Zitat S. R. Hall, C. F. Hall, K. Hansberry, S. C. Wimbush, Y. Shida, and W. Ogasawara, “High Jc in a biopolymer-mediated synthesis of YBa2Cu3O7 – δ,” Supercond. Sci. Technol. 25, No. 3, 035009 (2012).CrossRef S. R. Hall, C. F. Hall, K. Hansberry, S. C. Wimbush, Y. Shida, and W. Ogasawara, “High Jc in a biopolymer-mediated synthesis of YBa2Cu3O7 – δ,” Supercond. Sci. Technol. 25, No. 3, 035009 (2012).CrossRef
85.
Zurück zum Zitat V. Yu. Skudnev, A. A. Mironenko, A. Sh. Khachatryan, and V. Yu. Buz’ko, “Effect of template texturing on properties of Bi2Sr2Ca2Cu3O10 + x,” XX Mendeleev Congress on General and Applied Chemistry (2016), p. 374. V. Yu. Skudnev, A. A. Mironenko, A. Sh. Khachatryan, and V. Yu. Buz’ko, “Effect of template texturing on properties of Bi2Sr2Ca2Cu3O10 + x,” XX Mendeleev Congress on General and Applied Chemistry (2016), p. 374.
86.
Zurück zum Zitat E. A. Duarte, P. A. Quintero, M. W. Meisel, and J. C. Nino, “Electrospinning synthesis of superconducting BSCCO nanowires,” Phys. C 495, 109–113 (2013).CrossRef E. A. Duarte, P. A. Quintero, M. W. Meisel, and J. C. Nino, “Electrospinning synthesis of superconducting BSCCO nanowires,” Phys. C 495, 109–113 (2013).CrossRef
87.
Zurück zum Zitat X. L. Zeng, M. R. Koblischka, T. Karwoth, T. Hauet, and U. Hartmann, “Preparation of granular Bi-2212 nanowires by electrospinning,” Supercond. Sci. Technol. 30, No. 3, 035014 (2017).CrossRef X. L. Zeng, M. R. Koblischka, T. Karwoth, T. Hauet, and U. Hartmann, “Preparation of granular Bi-2212 nanowires by electrospinning,” Supercond. Sci. Technol. 30, No. 3, 035014 (2017).CrossRef
88.
Zurück zum Zitat X. M. Cui, W. S. Lyoo, W. K. Son, D. H. Park, J. H. Choy, T. S. Lee, and W. H. Park, “Fabrication of YBa2Cu3O7 – δ superconducting nanofibres by electrospinning,” Supercond. Sci. Technol. 19, No. 12, 1264 (2006).CrossRef X. M. Cui, W. S. Lyoo, W. K. Son, D. H. Park, J. H. Choy, T. S. Lee, and W. H. Park, “Fabrication of YBa2Cu3O7 – δ superconducting nanofibres by electrospinning,” Supercond. Sci. Technol. 19, No. 12, 1264 (2006).CrossRef
89.
Zurück zum Zitat E. A. Duarte, N. G. Rudawski, P. A. Quintero, M. W. Meisel, and J. C. Nino, “Electrospinning of superconducting YBCO nanowires,” Supercond. Sci. Technol. 28, No. 1, 015006 (2015).CrossRef E. A. Duarte, N. G. Rudawski, P. A. Quintero, M. W. Meisel, and J. C. Nino, “Electrospinning of superconducting YBCO nanowires,” Supercond. Sci. Technol. 28, No. 1, 015006 (2015).CrossRef
90.
Zurück zum Zitat J. C. Bernardi, D. A. Modesto, M. S. Medina, A. Zenatti, E. C. Venancio, E. R. Leite, A. J. C. Lanfredi, and M. T. Escote, “Superconductor YBa2Cu3 – xNixO7 – δ compounds prepared by electrospinning,” Mater. Res. Express 6, No. 8, 086001 (2019). J. C. Bernardi, D. A. Modesto, M. S. Medina, A. Zenatti, E. C. Venancio, E. R. Leite, A. J. C. Lanfredi, and M. T. Escote, “Superconductor YBa2Cu3 – xNixO7 – δ compounds prepared by electrospinning,” Mater. Res. Express 6, No. 8, 086001 (2019).
91.
Zurück zum Zitat J. M. Li, X. L. Zeng, A. D. Mo, and Z. A. Xu, “Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen,” CrystEngComm 13, No. 23, 6964–6967 (2011).CrossRef J. M. Li, X. L. Zeng, A. D. Mo, and Z. A. Xu, “Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen,” CrystEngComm 13, No. 23, 6964–6967 (2011).CrossRef
92.
Zurück zum Zitat X. L. Zeng, M. R. Koblischka, and U. Hartmann, “Synthesis and characterization of electrospun superconducting (La,Sr)CuO4 nanowires and nanoribbons,” Mater. Res. Express 2, No. 9, 095002 (2015). X. L. Zeng, M. R. Koblischka, and U. Hartmann, “Synthesis and characterization of electrospun superconducting (La,Sr)CuO4 nanowires and nanoribbons,” Mater. Res. Express 2, No. 9, 095002 (2015).
93.
Zurück zum Zitat X. L. Zeng, M. R. Koblischka, F. Laurent, T. Karwoth, A. Koblischka-Veneva, U. Hartmann, C. Chang, P. Kumar, and O. Eibl, “Characterization of electrospun Bi2Sr2CaCu2O8 + δ nanowires with reduced preparation temperature,” IEEE Trans. Appl. Supercond. 28, No. 4, 7200505 (2018).CrossRef X. L. Zeng, M. R. Koblischka, F. Laurent, T. Karwoth, A. Koblischka-Veneva, U. Hartmann, C. Chang, P. Kumar, and O. Eibl, “Characterization of electrospun Bi2Sr2CaCu2O8 + δ nanowires with reduced preparation temperature,” IEEE Trans. Appl. Supercond. 28, No. 4, 7200505 (2018).CrossRef
94.
Zurück zum Zitat M. Rotta, L. Zadorosny, C. L. Carvalho, J. A. Malmonge, L. F. Malmonge, and R. Zadorosny, “YBCO ceramic nanofibers obtained by the new technique of solution blow spinning,” Ceram. Int. 42, No. 14, 16230–16234 (2016).CrossRef M. Rotta, L. Zadorosny, C. L. Carvalho, J. A. Malmonge, L. F. Malmonge, and R. Zadorosny, “YBCO ceramic nanofibers obtained by the new technique of solution blow spinning,” Ceram. Int. 42, No. 14, 16230–16234 (2016).CrossRef
95.
Zurück zum Zitat M. Rotta, M. Motta, A. L. Pessoa, C. L. Carvalho, W. A. Ortiz, and R. Zadorosny, “Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7 – x nanowires,” J. Mater. Sci.: Mater. Electron. 30, No. 9, 9045–9050 (2019). M. Rotta, M. Motta, A. L. Pessoa, C. L. Carvalho, W. A. Ortiz, and R. Zadorosny, “Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7 – x nanowires,” J. Mater. Sci.: Mater. Electron. 30, No. 9, 9045–9050 (2019).
96.
Zurück zum Zitat C. R. Cena, G. B. Torsoni, L. Zadorosny, L. F. Malmonge, C. L. Carvalho, and J. A. Malmonge, “BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique,” Ceram. Int. 43, No. 10, 7663–7667 (2017).CrossRef C. R. Cena, G. B. Torsoni, L. Zadorosny, L. F. Malmonge, C. L. Carvalho, and J. A. Malmonge, “BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique,” Ceram. Int. 43, No. 10, 7663–7667 (2017).CrossRef
97.
Zurück zum Zitat A. Jung, S. Diebels, A. Koblischka-Veneva, J. Schmauch, A. Barnoush, and M. R. Koblischka, “Microstructural analysis of electrochemical coated open-cell metal foams by EBSD and nanoindentation,” Adv. Eng. Mater. 16, No. 1, 15–20 (2014).CrossRef A. Jung, S. Diebels, A. Koblischka-Veneva, J. Schmauch, A. Barnoush, and M. R. Koblischka, “Microstructural analysis of electrochemical coated open-cell metal foams by EBSD and nanoindentation,” Adv. Eng. Mater. 16, No. 1, 15–20 (2014).CrossRef
98.
Zurück zum Zitat M. Koblischka, A. Koblischka-Veneva, E. S. Reddy, and G. J. Schmitz, “Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD,” J. Adv. Ceram. 3, No. 4, 317–325 (2014).CrossRef M. Koblischka, A. Koblischka-Veneva, E. S. Reddy, and G. J. Schmitz, “Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD,” J. Adv. Ceram. 3, No. 4, 317–325 (2014).CrossRef
99.
Zurück zum Zitat A. Koblischka-Veneva, M. R. Koblischka, N. Ide, K. Inoue, M. Muralidhar, T. Hauet, and M. Murakami, “Microstructural and magnetic analysis of a superconducting foam and comparison with IG-processed bulk samples,” J. Phys.: Conf. Ser. 695, No. 1, 012002 (2016). A. Koblischka-Veneva, M. R. Koblischka, N. Ide, K. Inoue, M. Muralidhar, T. Hauet, and M. Murakami, “Microstructural and magnetic analysis of a superconducting foam and comparison with IG-processed bulk samples,” J. Phys.: Conf. Ser. 695, No. 1, 012002 (2016).
100.
Zurück zum Zitat A. Koblischka-Veneva, M. R. Koblischka, J. Schmauch, and M. Murakami, “Transmission EBSD (t-EBSD) as tool to investigate nanostructures in superconductors,” J. Supercond. Novel Magn. 32, No. 10, 3155–3163 (2019).CrossRef A. Koblischka-Veneva, M. R. Koblischka, J. Schmauch, and M. Murakami, “Transmission EBSD (t-EBSD) as tool to investigate nanostructures in superconductors,” J. Supercond. Novel Magn. 32, No. 10, 3155–3163 (2019).CrossRef
101.
Zurück zum Zitat A. Koblischka-Veneva, M. R. Koblischka, X. L. Zeng, J. Schmauch, and U. Hartmann, “TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires,” J. Phys.: Conf. Ser. 1054, No. 1, 012005 (2018). A. Koblischka-Veneva, M. R. Koblischka, X. L. Zeng, J. Schmauch, and U. Hartmann, “TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires,” J. Phys.: Conf. Ser. 1054, No. 1, 012005 (2018).
102.
Zurück zum Zitat K. Yu. Terent’ev, D. M. Gokhfel’d, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, “Pinning in a porous high-temperature superconductor BI2223,” Phys. Solid State 53, No. 12, 2289–2293 (2011).CrossRef K. Yu. Terent’ev, D. M. Gokhfel’d, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, “Pinning in a porous high-temperature superconductor BI2223,” Phys. Solid State 53, No. 12, 2289–2293 (2011).CrossRef
103.
Zurück zum Zitat J. Bock and A. M. Jacobi, “Geometric classification of open-cell metal foams using X-ray micro-computed tomography,” Mater. Charact. 75, 35–43 (2013).CrossRef J. Bock and A. M. Jacobi, “Geometric classification of open-cell metal foams using X-ray micro-computed tomography,” Mater. Charact. 75, 35–43 (2013).CrossRef
104.
Zurück zum Zitat Plachenov, T.G. and Kolosentsev, S.D., Porosimetry (Khimiya, Leningrad, 1988). Plachenov, T.G. and Kolosentsev, S.D., Porosimetry (Khimiya, Leningrad, 1988).
105.
Zurück zum Zitat J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids (Technical Report),” Pure Appl. Chem. 66, No. 8, 1739–1758 (1994).CrossRef J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids (Technical Report),” Pure Appl. Chem. 66, No. 8, 1739–1758 (1994).CrossRef
106.
Zurück zum Zitat J. G. Noudem, E. S. Reddy, and G. J. Schmitz, “Magnetic and transport properties of YBa2Cu3Oy superconductor foams,” Phys. C 390, No. 4, 286–290 (2003).CrossRef J. G. Noudem, E. S. Reddy, and G. J. Schmitz, “Magnetic and transport properties of YBa2Cu3Oy superconductor foams,” Phys. C 390, No. 4, 286–290 (2003).CrossRef
107.
Zurück zum Zitat J. G. Noudem, “Development of shaping textured YBaCuO superconductors,” J. Supercond. Novel Magn. 24, No. 1–2, 105–110 (2011).CrossRef J. G. Noudem, “Development of shaping textured YBaCuO superconductors,” J. Supercond. Novel Magn. 24, No. 1–2, 105–110 (2011).CrossRef
108.
Zurück zum Zitat M. R. Koblischka, A. Koblischka-Veneva, K. Berger, Q. Nouailhetas, B. Douine, E. S. Reddy, and G. J. Schmitz, “Current flow and flux pinning properties of YBCO foam struts,” IEEE Trans. Appl. Supercond. 29, No. 5, 8001405 (2019). M. R. Koblischka, A. Koblischka-Veneva, K. Berger, Q. Nouailhetas, B. Douine, E. S. Reddy, and G. J. Schmitz, “Current flow and flux pinning properties of YBCO foam struts,” IEEE Trans. Appl. Supercond. 29, No. 5, 8001405 (2019).
109.
Zurück zum Zitat M. R. Koblischka, A. Koblischka-Veneva, Kumar. Pavan, S. Naik, D. Gokhfeld, and M. Murakami,” Porous high-Tc superconducting cuprates: Advantages and applications,” J. Phys.: Conf. Ser. 1293, No. 1, 012009 (2019). M. R. Koblischka, A. Koblischka-Veneva, Kumar. Pavan, S. Naik, D. Gokhfeld, and M. Murakami,” Porous high-Tc superconducting cuprates: Advantages and applications,” J. Phys.: Conf. Ser. 1293, No. 1, 012009 (2019).
110.
Zurück zum Zitat M. R. Koblischka, A. Koblischka-Veneva, C. S. Chang, T. Hauet, E. S. Reddy, and G. J. Schmitz, “Flux pinning analysis of superconducting YBCO foam struts,” IEEE Trans. Appl. Supercond. 29, No. 3, 8001905 (2019). M. R. Koblischka, A. Koblischka-Veneva, C. S. Chang, T. Hauet, E. S. Reddy, and G. J. Schmitz, “Flux pinning analysis of superconducting YBCO foam struts,” IEEE Trans. Appl. Supercond. 29, No. 3, 8001905 (2019).
111.
Zurück zum Zitat M. R. Koblischka, S. Pavan Kumar Naik, A. Koblischka-Veneva, D. Gokhfeld, and M. Murakami, “Flux creep after field trapping in YBa2Cu3Ox foams,” Supercond. Sci. Technol. 33, No. 4, 044008 (2020).CrossRef M. R. Koblischka, S. Pavan Kumar Naik, A. Koblischka-Veneva, D. Gokhfeld, and M. Murakami, “Flux creep after field trapping in YBa2Cu3Ox foams,” Supercond. Sci. Technol. 33, No. 4, 044008 (2020).CrossRef
112.
Zurück zum Zitat X. L. Zeng, T. Karwoth, M. R. Koblischka, U. Hartmann, D. M. Gokhfeld, C. Chang, and T. Hauet, “Analysis of magnetization loops of electrospun nonwoven superconducting fabrics,” Phys. Rev. Mater. 1, No. 4, 044802 (2017).CrossRef X. L. Zeng, T. Karwoth, M. R. Koblischka, U. Hartmann, D. M. Gokhfeld, C. Chang, and T. Hauet, “Analysis of magnetization loops of electrospun nonwoven superconducting fabrics,” Phys. Rev. Mater. 1, No. 4, 044802 (2017).CrossRef
113.
Zurück zum Zitat M. R. Koblischka, D. M. Gokhfeld, C. Chang, T. Hauet, and U. Hartmann, “Pinning force scaling of electrospun Bi-2212 nanowire networks,” Solid State Commun. 264, 16–18 (2017).CrossRef M. R. Koblischka, D. M. Gokhfeld, C. Chang, T. Hauet, and U. Hartmann, “Pinning force scaling of electrospun Bi-2212 nanowire networks,” Solid State Commun. 264, 16–18 (2017).CrossRef
114.
Zurück zum Zitat M. R. Koblischka, X. L. Zeng, T. Karwoth, T. Hauet, and U. Hartmann, “Magnetic properties of electrospun non-woven superconducting fabrics,” AIP Adv. 6, No. 3, 035115 (2016).CrossRef M. R. Koblischka, X. L. Zeng, T. Karwoth, T. Hauet, and U. Hartmann, “Magnetic properties of electrospun non-woven superconducting fabrics,” AIP Adv. 6, No. 3, 035115 (2016).CrossRef
115.
Zurück zum Zitat M. R. Koblischka, X. L. Zeng, T. Karwoth, T. Hauet, and U. Hartmann, “Transport and magnetic measurements on Bi2Sr2CaCu2O8 nanowire networks prepared via electrospinning,” IEEE Trans. Appl. Supercond. 26, No. 3, 1800605 (2016).CrossRef M. R. Koblischka, X. L. Zeng, T. Karwoth, T. Hauet, and U. Hartmann, “Transport and magnetic measurements on Bi2Sr2CaCu2O8 nanowire networks prepared via electrospinning,” IEEE Trans. Appl. Supercond. 26, No. 3, 1800605 (2016).CrossRef
116.
Zurück zum Zitat D. M. Gokhfeld, D. A. Balaev, S. I. Popkov, K. A. Shaykhutdinov, and M. I. Petrov, “Magnetization loop and critical current of porous Bi-based HTS,” Phys. C 434, No. 2, 135–137 (2006).CrossRef D. M. Gokhfeld, D. A. Balaev, S. I. Popkov, K. A. Shaykhutdinov, and M. I. Petrov, “Magnetization loop and critical current of porous Bi-based HTS,” Phys. C 434, No. 2, 135–137 (2006).CrossRef
117.
Zurück zum Zitat M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gokhfeld, S. I. Popkov, and S. A. Satzuk, “Magnetic properties of a low-density Bi-based HTSC,” Phys. Met. Metallogr. 101, No. 1, 29–32 (2006).CrossRef M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gokhfeld, S. I. Popkov, and S. A. Satzuk, “Magnetic properties of a low-density Bi-based HTSC,” Phys. Met. Metallogr. 101, No. 1, 29–32 (2006).CrossRef
118.
Zurück zum Zitat K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, “ Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors,” Phys. Solid State 51, 1105–1109 (2009).CrossRef K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, “ Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors,” Phys. Solid State 51, 1105–1109 (2009).CrossRef
119.
Zurück zum Zitat M. I. Petrov, D. A. Balaev, I. L. Belozerova, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and O. N. Mart’yanov, “Increase in the diamagnetic response from low-density Bi1.8Pb0.3Sr1.9Ca2Cu3Ox high-temperature superconductors and Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag composites,” Tech. Phys. 54, 1130–1134 (2009).CrossRef M. I. Petrov, D. A. Balaev, I. L. Belozerova, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and O. N. Mart’yanov, “Increase in the diamagnetic response from low-density Bi1.8Pb0.3Sr1.9Ca2Cu3Ox high-temperature superconductors and Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag composites,” Tech. Phys. 54, 1130–1134 (2009).CrossRef
120.
Zurück zum Zitat D. M. Gokhfeld, D. A. Balaev, M. I. Petrov, S. I. Popkov, K. A. Shaykhutdinov, and V. V. Val’kov, Magnetization asymmetry of type-II superconductors in high magnetic fields, J. Appl. Phys. American Institute of Physics. 109, No. 3, 033904 (2011).CrossRef D. M. Gokhfeld, D. A. Balaev, M. I. Petrov, S. I. Popkov, K. A. Shaykhutdinov, and V. V. Val’kov, Magnetization asymmetry of type-II superconductors in high magnetic fields, J. Appl. Phys. American Institute of Physics. 109, No. 3, 033904 (2011).CrossRef
121.
Zurück zum Zitat D.-X. Chen, R. W. Cross, and A. Sanchez, Effects of critical current density, equilibrium magnetization and surface barrier on magnetization of high temperature superconductors, Cryogenics (Guildf). Elsevier. 33, No. 7, 695–703 (1993). D.-X. Chen, R. W. Cross, and A. Sanchez, Effects of critical current density, equilibrium magnetization and surface barrier on magnetization of high temperature superconductors, Cryogenics (Guildf). Elsevier. 33, No. 7, 695–703 (1993).
122.
Zurück zum Zitat D. M. Gokhfel’d, “An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors,” Phys. Solid State 56, No. 12, 2380–2386 (2014).CrossRef D. M. Gokhfel’d, “An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors,” Phys. Solid State 56, No. 12, 2380–2386 (2014).CrossRef
123.
Zurück zum Zitat D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, “High-Tc superconducting materials for electric power applications,” Nature 414, No. 6861, 368–377 (2001).CrossRef D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, “High-Tc superconducting materials for electric power applications,” Nature 414, No. 6861, 368–377 (2001).CrossRef
124.
Zurück zum Zitat B. Hensel, G. Grasso, and R. Flükiger, “Limits to the critical transport current in superconducting (Bi,Pb)2Sr2Ca2Cu3O10 silver-sheathed tapes: The railway-switch model,” Phys. Rev. B 51, No. 21, 15456–15473 (1995).CrossRef B. Hensel, G. Grasso, and R. Flükiger, “Limits to the critical transport current in superconducting (Bi,Pb)2Sr2Ca2Cu3O10 silver-sheathed tapes: The railway-switch model,” Phys. Rev. B 51, No. 21, 15456–15473 (1995).CrossRef
125.
Zurück zum Zitat J. Horvat, S. X. Dou, H. K. Liu, and R. Bhasale, “Critical currents through strong links in Ag/Bi–Sr–Ca–Cu–O superconducting tapes,” Phys. C 271, Nos. 1–2, 51–58 (1996).CrossRef J. Horvat, S. X. Dou, H. K. Liu, and R. Bhasale, “Critical currents through strong links in Ag/Bi–Sr–Ca–Cu–O superconducting tapes,” Phys. C 271, Nos. 1–2, 51–58 (1996).CrossRef
126.
Zurück zum Zitat G. Blatter, M. V. Feigel’man, V. B. Geschkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, No. 4, 1125–1388 (1994).CrossRef G. Blatter, M. V. Feigel’man, V. B. Geschkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, No. 4, 1125–1388 (1994).CrossRef
127.
Zurück zum Zitat K. A. Shaykhutdinov, D. A. Balaev, D. M. Gokhfeld, Yu. I. Kuzmin, S. I. Popkov, and M. I. Petrov, “Study of current–voltage characteristics of Bi-based high-temperature superconductors with fractal cluster structure,” Phys. C 435, Nos. 1–2, 19–22 (2006).CrossRef K. A. Shaykhutdinov, D. A. Balaev, D. M. Gokhfeld, Yu. I. Kuzmin, S. I. Popkov, and M. I. Petrov, “Study of current–voltage characteristics of Bi-based high-temperature superconductors with fractal cluster structure,” Phys. C 435, Nos. 1–2, 19–22 (2006).CrossRef
128.
Zurück zum Zitat K. A. Shaykhutdinov, D. A. Balaev, S. I. Popkov, A. D. Vasilyev, O. N. Martyanov, and M. I. Petrov, “Thermally activated dissipation in a novel foamed Bi‑based oxide superconductor in magnetic fields,” Supercond. Sci. Technol. 20, No. 6, 491–494 (2007).CrossRef K. A. Shaykhutdinov, D. A. Balaev, S. I. Popkov, A. D. Vasilyev, O. N. Martyanov, and M. I. Petrov, “Thermally activated dissipation in a novel foamed Bi‑based oxide superconductor in magnetic fields,” Supercond. Sci. Technol. 20, No. 6, 491–494 (2007).CrossRef
129.
Zurück zum Zitat M. Prester, “Current transfer and initial dissipation in high-Tc superconductors,” Supercond. Sci. Technol. 11, No. 4, 333–357 (1998).CrossRef M. Prester, “Current transfer and initial dissipation in high-Tc superconductors,” Supercond. Sci. Technol. 11, No. 4, 333–357 (1998).CrossRef
130.
Zurück zum Zitat D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, and D. M. Gokhfeld, “Magnetoresistance of porous polycrystalline htsc: effect of the transport current on magnetic flux compression in intergranular medium,” Phys. Solid State 56, No. 8, 1542–1547 (2014).CrossRef D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, and D. M. Gokhfeld, “Magnetoresistance of porous polycrystalline htsc: effect of the transport current on magnetic flux compression in intergranular medium,” Phys. Solid State 56, No. 8, 1542–1547 (2014).CrossRef
131.
Zurück zum Zitat D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfel’d, Yu. S. Gokhfeld, and M. I. Petrov, “Mechanism of the hysteretic behavior of the magnetoresistance of granular htscs: the universal nature of the width of the magnetoresistance hysteresis loop,” J. Exp. Theor. Phys. 108, No. 2, 241–248 (2009).CrossRef D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfel’d, Yu. S. Gokhfeld, and M. I. Petrov, “Mechanism of the hysteretic behavior of the magnetoresistance of granular htscs: the universal nature of the width of the magnetoresistance hysteresis loop,” J. Exp. Theor. Phys. 108, No. 2, 241–248 (2009).CrossRef
132.
Zurück zum Zitat M. I. Petrov, D. A. Balaev, I. L. Belozerova, A. D. Vasil’ev, D. M. Gokhfel’d, O. M. Mart’yanov, S. I. Popkov, and K. A. Shaikhutdinov, “ Obtaining by uniaxial pressing in a liquid medium and physical properties of bismuth HTSC ceramics with a high degree of texture,” Pis’ma Zh. Tekh. Fiz. 33, No. 17, 52–60 (2007). M. I. Petrov, D. A. Balaev, I. L. Belozerova, A. D. Vasil’ev, D. M. Gokhfel’d, O. M. Mart’yanov, S. I. Popkov, and K. A. Shaikhutdinov, “ Obtaining by uniaxial pressing in a liquid medium and physical properties of bismuth HTSC ceramics with a high degree of texture,” Pis’ma Zh. Tekh. Fiz. 33, No. 17, 52–60 (2007).
133.
Zurück zum Zitat M. I. Petrov, I. L. Belozerova, K. A. Shaikhutdinov, D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, A. D. Vasil’ev, and O. N. Mart’yanov, “Preparation, microstructure, magnetic and transport properties of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox and Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag ceramics,” Supercond. Sci. Technol. 21, No. 10, 105019 (2008).CrossRef M. I. Petrov, I. L. Belozerova, K. A. Shaikhutdinov, D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, A. D. Vasil’ev, and O. N. Mart’yanov, “Preparation, microstructure, magnetic and transport properties of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox and Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag ceramics,” Supercond. Sci. Technol. 21, No. 10, 105019 (2008).CrossRef
134.
Zurück zum Zitat D. M. Gokhfel’d and D. A. Balaev, “Magnetization anisotropy in the textured Bi-2223 HTS in strong magnetic fields,” Phys. Solid State 62, No. 7, 1145–1149 (2020).CrossRef D. M. Gokhfel’d and D. A. Balaev, “Magnetization anisotropy in the textured Bi-2223 HTS in strong magnetic fields,” Phys. Solid State 62, No. 7, 1145–1149 (2020).CrossRef
135.
Zurück zum Zitat E. P. Romanov, Yu. V. Blinova, S. V. Sudareva, T. P. Krinitsina, and I. I. Akimov, “Mechanism of formation, fine structure, and superconducting properties of high-temperature superconductors and superconducting composites,” Phys. Met. Metallogr. 101, No. 1, 27–44 (2006).CrossRef E. P. Romanov, Yu. V. Blinova, S. V. Sudareva, T. P. Krinitsina, and I. I. Akimov, “Mechanism of formation, fine structure, and superconducting properties of high-temperature superconductors and superconducting composites,” Phys. Met. Metallogr. 101, No. 1, 27–44 (2006).CrossRef
136.
Zurück zum Zitat A. L. Pessoa, M. J. Raine, D. P. Hampshire, D. K. Namburi, J. H. Durrell, and R. Zadorosny, “Successful production of Solution Blow Spun YBCO + Ag complex ceramics,” Ceram. Int. 46, No. 15, 24097 (2020). A. L. Pessoa, M. J. Raine, D. P. Hampshire, D. K. Namburi, J. H. Durrell, and R. Zadorosny, “Successful production of Solution Blow Spun YBCO + Ag complex ceramics,” Ceram. Int. 46, No. 15, 24097 (2020).
137.
Zurück zum Zitat A. G. Mamalis, M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gohfeld, S. V. Militsyn, S. G. Ovchinnikov, and V. I. Kirko, “A dc superconducting fault current limiter using die-pressed YBa2Cu3O7 ceramic,” Supercond. Sci. Technol. 14, 413 (2001).CrossRef A. G. Mamalis, M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gohfeld, S. V. Militsyn, S. G. Ovchinnikov, and V. I. Kirko, “A dc superconducting fault current limiter using die-pressed YBa2Cu3O7 ceramic,” Supercond. Sci. Technol. 14, 413 (2001).CrossRef
138.
Zurück zum Zitat J. X. Jin, Y. Xin, Q. L. Wang, Y. S. He, C. B. Cai, Y. S. Wang, and Z. M. Wang, “Enabling high-temperature superconducting technologies toward practical applications,” IEEE Trans. Appl. Supercond. 24, No. 5, 1–12 (2014). J. X. Jin, Y. Xin, Q. L. Wang, Y. S. He, C. B. Cai, Y. S. Wang, and Z. M. Wang, “Enabling high-temperature superconducting technologies toward practical applications,” IEEE Trans. Appl. Supercond. 24, No. 5, 1–12 (2014).
139.
Zurück zum Zitat Z. Jia, F. Liu, X. Jiang, and L. Wang, “Engineering lattice metamaterials for extreme property, programmability, and multifunctionality,” J. Appl. Phys. 127, No. 15, 150901 (2020).CrossRef Z. Jia, F. Liu, X. Jiang, and L. Wang, “Engineering lattice metamaterials for extreme property, programmability, and multifunctionality,” J. Appl. Phys. 127, No. 15, 150901 (2020).CrossRef
140.
Zurück zum Zitat J. Shoer, W. Wilson, L. Jones, M. Knobel, and M. Peck, “Microgravity demonstrations of flux pinning for station-keeping and reconfiguration of CubeSat-sized spacecraft,” J. Spacecr. Rockets 47, No. 6, 1066–1070 (2010).CrossRef J. Shoer, W. Wilson, L. Jones, M. Knobel, and M. Peck, “Microgravity demonstrations of flux pinning for station-keeping and reconfiguration of CubeSat-sized spacecraft,” J. Spacecr. Rockets 47, No. 6, 1066–1070 (2010).CrossRef
141.
Zurück zum Zitat W. Yang, D. Liao, Y. Ji, and L. Yao, “Effects of magnetization conditions on dynamic characteristics of spacecrafts with superconducting flux pinning docking interfaces,” J. Appl. Phys. 124, No. 21, 213901 (2018).CrossRef W. Yang, D. Liao, Y. Ji, and L. Yao, “Effects of magnetization conditions on dynamic characteristics of spacecrafts with superconducting flux pinning docking interfaces,” J. Appl. Phys. 124, No. 21, 213901 (2018).CrossRef
142.
Zurück zum Zitat A. Giffin, M. N. Shneider, and R. B. Miles, “Potential micrometeoroid and orbital debris protection system using a gradient magnetic field and magnetic flux compression,” Appl. Phys. Lett. 97, No. 5, 054102 (2010).CrossRef A. Giffin, M. N. Shneider, and R. B. Miles, “Potential micrometeoroid and orbital debris protection system using a gradient magnetic field and magnetic flux compression,” Appl. Phys. Lett. 97, No. 5, 054102 (2010).CrossRef
143.
Zurück zum Zitat F. Zheng, “Model for choosing best alternative to remove space junk,” Proc. 2017 5th Int. Conf. on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017) (Atlantis Press, Paris, 2017). F. Zheng, “Model for choosing best alternative to remove space junk,” Proc. 2017 5th Int. Conf. on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017) (Atlantis Press, Paris, 2017).
144.
Zurück zum Zitat C. A. Luongo, P. J. Masson, T. Nam, D. Mavris, H. D. Kim, G. V. Brown, M. Waters, and D. Hall, “Next generation more-electric aircraft: a potential application for hts superconductors,” IEEE Trans. Appl. Supercond. 19, No. 3, 1055–1068 (2009).CrossRef C. A. Luongo, P. J. Masson, T. Nam, D. Mavris, H. D. Kim, G. V. Brown, M. Waters, and D. Hall, “Next generation more-electric aircraft: a potential application for hts superconductors,” IEEE Trans. Appl. Supercond. 19, No. 3, 1055–1068 (2009).CrossRef
145.
Zurück zum Zitat M. Filipenko, L. Kühn, T. Gleixner, M. Thummet, M. Lessmann, D. Möller, M. Böhm, A. Schröter, K. Häse, J. Grundmann, M. Wilke, M. Frank, P. Hasselt, J. Richter, M. Herranz-Garcia, C. Weidermann, A. Spangolo, and M. Klöpzig, “Concept design of a high power superconducting generator for future hybrid-electric aircraft,” Supercond. Sci. Technol. 33, No. 5, 054002 (2020).CrossRef M. Filipenko, L. Kühn, T. Gleixner, M. Thummet, M. Lessmann, D. Möller, M. Böhm, A. Schröter, K. Häse, J. Grundmann, M. Wilke, M. Frank, P. Hasselt, J. Richter, M. Herranz-Garcia, C. Weidermann, A. Spangolo, and M. Klöpzig, “Concept design of a high power superconducting generator for future hybrid-electric aircraft,” Supercond. Sci. Technol. 33, No. 5, 054002 (2020).CrossRef
146.
Zurück zum Zitat C. Huang, B. Xu, and Y. Zhou, “Strategies to improve the dynamic levitation performance of superconducting maglevs against force decay and disturbance,” J. Appl. Phys. 127, No. 19, 193907 (2020).CrossRef C. Huang, B. Xu, and Y. Zhou, “Strategies to improve the dynamic levitation performance of superconducting maglevs against force decay and disturbance,” J. Appl. Phys. 127, No. 19, 193907 (2020).CrossRef
Metadaten
Titel
Highly Porous Superconductors: Synthesis, Research, and Prospects
verfasst von
D. M. Gokhfeld
M. R. Koblischka
A. Koblischka-Veneva
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 10/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20100051

Weitere Artikel der Ausgabe 10/2020

Physics of Metals and Metallography 10/2020 Zur Ausgabe