Skip to main content

2017 | OriginalPaper | Buchkapitel

8. The Small-Gain Theorem for Nonlinear Systems and Its Applications to Robust Stability

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As it is the case for linear systems, understanding the influence of interconnections on stability and asymptotic behavior is of paramount importance. In the case of nonlinear systems, a powerful concept in the analysis of interconnections is the notion of gain function of an input-to-state stable system. Using this concept, it is possible to develop a nonlinear version of the small-gain theorem, which is useful in the analysis as well as in the design of feedback laws. This chapter describes this theorem and how it can be used in the design of stabilizing feedback laws for nonlinear systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
More precisely, if the \({\mathscr {L}}_2\) gains of the two component systems are upper-bounded by two numbers \(\bar{\gamma }_1\) and \( \bar{\gamma }_2\) satisfying \(\bar{\gamma }_1\bar{\gamma }_2 \le 1\).
 
2
See [9] for an introduction to the property of input-to-state stability.
 
3
A function \(\gamma : [0,\infty ) \rightarrow [0,\infty )\) satisfying \(\gamma (0)=0\) and \(\gamma (r)<r\) for all \(r>0\) is called a simple contraction. Observe that if \(\gamma _1\circ \gamma _2(\cdot )\) is a simple contraction, then also \(\gamma _2\circ \gamma _1(\cdot )\) is a simple contraction. In fact, let \(\gamma _1^{-1}(\cdot )\) denote the inverse of the function \(\gamma _1(\cdot )\), which is defined on an interval of the form \([0,r_1^*)\) where
$$ r_1^*= \lim _{r \rightarrow \infty }\gamma _1(r). $$
If \(\gamma _1\circ \gamma _2(\cdot )\) is a simple contraction, then
$$ \gamma _2(r)< \gamma _1^{-1}(r) \;\;\mathrm{for}\;\;\mathrm{all}\;\;0<r<r_1^*, $$
and this shows that
$$ \gamma _2(\gamma _1(r)) <r\;\;\mathrm{for}\;\;\mathrm{all}\;\;r>0, $$
i.e., \(\gamma _2\circ \gamma _1(\cdot )\) is a simple contraction.
 
4
Related results can be found in [6, 7, 10]. See also [24] and [11] for earlier versions of a Small-Gain Theorem for nonlinear systems.
 
5
The reader should have no difficulty in checking that a function defined as has the indicated property.
 
6
See [1] for further results of this kind.
 
7
Use the fact that \(x\alpha (x) = |x|\alpha (|x|).\)
 
8
Note that the resulting system is a special case of the system in Fig. 8.2, namely the interconnection of
$$ \dot{x} = q(v_1,x) + b(v_2)u \quad z = x \quad y = x $$
and
$$ \begin{array}{rcl} \dot{x}_\mathrm{p} &{}=&{} f_\mathrm{p}(x_\mathrm{p},z)\\ \dot{\mu }&{}=&{} 0\end{array} \quad \begin{array}{rcl} v_1 &{}=&{} x_\mathrm{p}\\ v_2 &{}=&{} \mu \end{array}$$
with control \(u=h_\mathrm{c}(y)\).
 
9
For similar results, see also [5, 8].
 
10
See also [12].
 
Literatur
1.
Zurück zum Zitat J.M. Coron, L. Praly, A.R. Teel, Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input–output techniques, in Trends in Control, ed. by A. Isidori (Springer, London, 1995), pp. 293–348CrossRef J.M. Coron, L. Praly, A.R. Teel, Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input–output techniques, in Trends in Control, ed. by A. Isidori (Springer, London, 1995), pp. 293–348CrossRef
2.
3.
Zurück zum Zitat D. Hill, P.J. Moylan, Stability results for nonlinear feedback systems. Automatica 13, 377–382 (1977)CrossRefMATH D. Hill, P.J. Moylan, Stability results for nonlinear feedback systems. Automatica 13, 377–382 (1977)CrossRefMATH
4.
Zurück zum Zitat D. Hill, P.J. Moylan, Connections between finite gain and asymptotic stability. IEEE Trans. Autom. Control AC–25, 931–935 (1980)MathSciNetCrossRefMATH D. Hill, P.J. Moylan, Connections between finite gain and asymptotic stability. IEEE Trans. Autom. Control AC–25, 931–935 (1980)MathSciNetCrossRefMATH
5.
Zurück zum Zitat A.K. Imai, R.R. Costa, L. Hsu, G. Tao, P.V. Kokotovic, Multivariable adaptive control using high-frequency gain matrix factorization. IEEE Trans. Autom. Control 49(7), 1152–1157 (2004)MathSciNetCrossRef A.K. Imai, R.R. Costa, L. Hsu, G. Tao, P.V. Kokotovic, Multivariable adaptive control using high-frequency gain matrix factorization. IEEE Trans. Autom. Control 49(7), 1152–1157 (2004)MathSciNetCrossRef
6.
Zurück zum Zitat Z.P. Jiang, A.R. Teel, L. Praly, Small-gain theorem for ISS systems and applications. Math. Control Signal Syst. 7, 95–120 (1994)MathSciNetCrossRefMATH Z.P. Jiang, A.R. Teel, L. Praly, Small-gain theorem for ISS systems and applications. Math. Control Signal Syst. 7, 95–120 (1994)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Z.P. Jiang, I.M.Y. Mareels, Y. Wang, A Lyapunov formulation of the nonlinear-small gain theorem for interconnected ISS systems. Automatica 32, 1211–1215 (1996)MathSciNetCrossRefMATH Z.P. Jiang, I.M.Y. Mareels, Y. Wang, A Lyapunov formulation of the nonlinear-small gain theorem for interconnected ISS systems. Automatica 32, 1211–1215 (1996)MathSciNetCrossRefMATH
10.
Zurück zum Zitat A. Teel, A nonlinear small gain theorem for the analysis of control systems with saturations. IEEE Trans. Autom. Control AC–41, 1256–1270 (1996)MathSciNetCrossRefMATH A. Teel, A nonlinear small gain theorem for the analysis of control systems with saturations. IEEE Trans. Autom. Control AC–41, 1256–1270 (1996)MathSciNetCrossRefMATH
11.
Zurück zum Zitat M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: stability and stabilizability. IEEE Trans. Autom. Control AC–25, 773–779 (1980)MathSciNetCrossRefMATH M. Vidyasagar, Decomposition techniques for large-scale systems with nonadditive interactions: stability and stabilizability. IEEE Trans. Autom. Control AC–25, 773–779 (1980)MathSciNetCrossRefMATH
12.
Zurück zum Zitat L. Wang, A. Isidori, H. Su, Global stabilization of a class of invertible MIMO nonlinear systems. IEEE Trans. Autom. Control 60, 616–631 (2015)MathSciNetCrossRef L. Wang, A. Isidori, H. Su, Global stabilization of a class of invertible MIMO nonlinear systems. IEEE Trans. Autom. Control 60, 616–631 (2015)MathSciNetCrossRef
Metadaten
Titel
The Small-Gain Theorem for Nonlinear Systems and Its Applications to Robust Stability
verfasst von
Alberto Isidori
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42031-8_8

Neuer Inhalt