Skip to main content

2017 | OriginalPaper | Buchkapitel

9. The Structure of Multivariable Nonlinear Systems

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The purpose of this chapter is to analyze, in a multi-input multi-output nonlinear system (having the same number of input and output components), the notion of invertibility. A major consequence of such property is the existence of a change of variables that plays, for a multivariable system, a role equivalent to the change of variable leading to the normal form of a single-input single-output system. A class of special relevance consists of those invertible systems in which it is possible to force, by means of state feedback, a linear input–output behavior. A further subclass is that of those systems for which a (multivariable version of the concept of) relative degree can be defined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The algorithm in question, originally introduced by Silverman in [4] to the purpose of analyzing the structure of the “zeros at infinity” of the transfer function matrix of a multivariable linear system, was extended in [5, 6] to the purpose of analyzing the property of invertibility of a nonlinear system. Additional features of such algorithm are discussed in [7] and [10]. Related results on nonlinear invertibiliy can be found in [8, 9].
 
2
For consistency, set also \(J_1(x)=M_1(x)\).
 
3
Clearly, if at step \(k^*\) one finds that \(\rho _{k^*}=m\), then the partitions of \(L_{k^*}(\cdot )\) and \(M_{k^*}(\cdot )\) are trivial partitions, in which the upper blocks coincide with the matrices themselves, and this explains the notation used in the following formula.
 
4
It suffices to choose a \(C^k\) function with k large enough so that all derivatives of y(t) appearing in the developments which follow are defined and continuous.
 
5
If \(\rho _1=0\), the formula that follows must be replaced by
$$\begin{aligned} Q_1(y_{[1,\rho _1]}^{(1)},x)=H_1(x). \end{aligned}$$
 
6
If \(\rho _2-\rho _1=0\), the formula that follows must be replaced by
$$Q_2(y_{[1,\rho _1]}^{(1)},y_{[1,\rho _2]}^{(2)},x)=H_2(y_{[1,\rho _1]}^{(1)},y_{[1,\rho _1]}^{(2)},x)+ \tilde{F}_{21}(y_{[1,\rho _1]}^{(1)},x)[-y_{[1,\rho _1]}^{(1)} + H_1^\prime (x)],$$
while if \(\rho _2=\rho _1=0\) we have
$$Q_2(y_{[1,\rho _1]}^{(1)},y_{[1,\rho _2]}^{(2)},x)=H_2(y_{[1,\rho _1]}^{(1)},y_{[1,\rho _1]}^{(2)},x). $$
 
7
See [1, pp. 109–112].
 
8
The general case only requires appropriate notational adaptations.
 
9
For a proof, see [2] and also [1, pp. 114–115]. Related results can also be found in [11].
 
10
The notation used in this formula is defined as follows. Recall that Z(x) is a \((n-d)\times 1\) vector, whose ith component is the function \(z_i(x)\), and that g(x) is a \(n\times m\) matrix, whose jth column is the vector field \(g_j(x)\). The vector \(L_fZ(x)\) is the \((n-d)\times 1\) vector whose ith entry is \(L_fz_i(x)\) and the matrix \(L_gZ(x)\) is the \((n-d)\times m\) matrix whose entry on the ith row and jth column is \(L_{g_j}z_i(x)\).
 
11
See, again, [2] and also [1, pp. 115–118].
 
12
If \(\tau _1(x)\) and \(\tau _2(x)\) are vector fields defined on \(\mathbb R^n\) and \(\lambda (x)\) is a real-valued function defined on \(\mathbb R^n\), the property in question consists in the identity
$$ L_{[\tau _1,\tau _2]}\lambda (x) = L_{\tau _1}L_{\tau _2}\lambda (x) - L_{\tau _2}L_{\tau _1}\lambda (x).$$
Therefore, if \(L_{\tau _i}\lambda (x)=0\) for \(i=1,2\), then \(L_{[\tau _1,\tau _2]}\lambda (x) =0\) also.
 
13
See [3].
 
14
The matrix \(W_k(x)\) is the \(m\times m\) matrix whose entry on the ith row and jth column is \(L_{g_j}L_f^{k-1}h_i(x)\). With reference to the functions \(\tilde{f}(x)\) and \(\tilde{\beta }(x)\) defined in (9.3), note that, for any \(m\times 1\) vector \(\lambda (x)\), we have \(L_{\tilde{f}}\lambda (x)= L_f\lambda (x) + [L_g\lambda (x)]\alpha (x)\) and \(L_{\tilde{g}}\lambda (x)= [L_g\lambda (x)]\beta (x)\).
 
15
For consistency, we rewrite the matrix \(F_1(x)\) determined at the first step of the algorithm as \(F_{11}(x)\).
 
16
Simply take the derivative of both sides along f(x), use the fact that \(L_f L_{\tilde{f}}^kh(x)= L_{\tilde{f}}^{k+1}h(x) + L_{\tilde{g}}L_{\tilde{f}}^kh(x)\hat{\alpha }(x)\) and the fact that the \(K_i\)’s are constant.
 
17
We consider in what follows the case in which \(\rho _1>0\) and \(\rho _2>0\). The other cases require simple adaptations of the arguments.
 
18
There is no abuse of notation in using here symbols (specifically \(r_1,\ldots , r_m\) in (i) and (ii), and B(x) in (9.47)) identical to symbols used earlier in Sect. 9.4. As a matter of fact, we will show in a moment that the notations are consistent.
 
Literatur
2.
Zurück zum Zitat B. Schwartz, A. Isidori, T.J. Tarn, Global normal forms for MIMO systems, with applications to stabilization and disturbance attenuation. Math. Control Signals Syst. 12, 121–142 (1999)MathSciNetCrossRefMATH B. Schwartz, A. Isidori, T.J. Tarn, Global normal forms for MIMO systems, with applications to stabilization and disturbance attenuation. Math. Control Signals Syst. 12, 121–142 (1999)MathSciNetCrossRefMATH
3.
Zurück zum Zitat A. Isidori, A. Ruberti, On the synthesis of linear input-output responses for nonlinear systems. Syst. Control Lett. 4, 19–33 (1984)MathSciNetCrossRefMATH A. Isidori, A. Ruberti, On the synthesis of linear input-output responses for nonlinear systems. Syst. Control Lett. 4, 19–33 (1984)MathSciNetCrossRefMATH
4.
Zurück zum Zitat L.M. Silverman, Inversion of multivariable nonlinear systems. IEEE Trans. Autom. Control 14, 270–276 (1969)CrossRef L.M. Silverman, Inversion of multivariable nonlinear systems. IEEE Trans. Autom. Control 14, 270–276 (1969)CrossRef
5.
6.
7.
Zurück zum Zitat A. Isidori, C.H. Moog, in Modelling and Adaptive Control, ed. by C.I. Byrnes, A. Kurzhanski. On the Nonlinear Equivalent of the Notion of Transmission Zeros. Lecture Notes in Control and Communication, vol. 105 (Springer, 1988), pp. 146–158 A. Isidori, C.H. Moog, in Modelling and Adaptive Control, ed. by C.I. Byrnes, A. Kurzhanski. On the Nonlinear Equivalent of the Notion of Transmission Zeros. Lecture Notes in Control and Communication, vol. 105 (Springer, 1988), pp. 146–158
8.
Zurück zum Zitat M.D. Di Benedetto, J.W. Grizzle, C.H. Moog, Rank invariants of nonlinear systems. SIAM J. Control Optim. 27, 658–672 (1989)MathSciNetCrossRefMATH M.D. Di Benedetto, J.W. Grizzle, C.H. Moog, Rank invariants of nonlinear systems. SIAM J. Control Optim. 27, 658–672 (1989)MathSciNetCrossRefMATH
9.
Zurück zum Zitat W. Respondek, in Nonlinear Controllability and Optimal Control, ed. by H.J. Sussman. Right and Left Invertibility of Nonlinear Control Systems (Marcel Dekker, New York, 1990), pp. 133–176 W. Respondek, in Nonlinear Controllability and Optimal Control, ed. by H.J. Sussman. Right and Left Invertibility of Nonlinear Control Systems (Marcel Dekker, New York, 1990), pp. 133–176
11.
Zurück zum Zitat A. Liu, Z. Lin, On normal forms of nonlinear systems affine in control. IEEE Trans. Autom. Control 56(2), 239–253 (2011)MathSciNetCrossRef A. Liu, Z. Lin, On normal forms of nonlinear systems affine in control. IEEE Trans. Autom. Control 56(2), 239–253 (2011)MathSciNetCrossRef
Metadaten
Titel
The Structure of Multivariable Nonlinear Systems
verfasst von
Alberto Isidori
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42031-8_9

Neuer Inhalt