Skip to main content

2017 | Supplement | Buchkapitel

2. The Time-Frequency Analysis

verfasst von : Lokenath Debnath, Firdous A. Shah

Erschienen in: Lecture Notes on Wavelet Transforms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Signals are in general nonstationary. A complete representation of nonstationary signals requires frequency analysis that is local in time, resulting in the time-frequency analysis of signals. The Fourier transform analysis has long been recognized as the great tool for the study of stationary signals and processes where the properties are statistically invariant over time. However, it cannot be used for the frequency analysis that is local in time because it requires all previous as well as future information about the signal to evaluate its spectral density at a single frequency ω. Although time-frequency analysis of signals had its origin almost 60 years ago, there has been major development of the time-frequency distributions approach in the last three decades. The basic idea of the method is to develop a joint function of time and frequency, known as a time-frequency distribution, that can describe the energy density of a signal simultaneously in both time and frequency. In principle, the time-frequency distributions characterize phenomena in a two-dimensional time-frequency plane. Basically, there are two kinds of time-frequency representations. One is the quadratic method covering the time-frequency distributions, and the other is the linear approach including the Gabor transform, the Zak transform, the linear canonical transform, and the wavelet transform analysis. So, the time-frequency signal analysis deals with time-frequency representations of signals and with problems related to their definition, estimation, and interpretation, and it has evolved into a widely recognized applied discipline of signal processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The following list includes books and research papers that have been useful for the preparation of these notes as well as some which may be of interest for further study.
 
Literatur
Zurück zum Zitat Abe, S., & Sheridan, J. T. (1994a). Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: An operator approach, Journal of Physics A, 27, 4179–4187. Abe, S., & Sheridan, J. T. (1994a). Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: An operator approach, Journal of Physics A, 27, 4179–4187.
Zurück zum Zitat Abe, S., & Sheridan, J. T. (1994b). Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Optics Letters, 19, 1801–1803. Abe, S., & Sheridan, J. T. (1994b). Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Optics Letters, 19, 1801–1803.
Zurück zum Zitat Bastiaans, M. J. (1979). Wigner distribution function and its application to first-order optics. Journal of the Optical Society of America A, 69, 1710–1716 (1979).CrossRef Bastiaans, M. J. (1979). Wigner distribution function and its application to first-order optics. Journal of the Optical Society of America A, 69, 1710–1716 (1979).CrossRef
Zurück zum Zitat Bahri, M., & Ashino, R. (2016). Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. International Journal of Wavelets, Multiresolution and Information Processing, 14(3), 1650015 (21 pages).MathSciNetCrossRefMATH Bahri, M., & Ashino, R. (2016). Some properties of windowed linear canonical transform and its logarithmic uncertainty principle. International Journal of Wavelets, Multiresolution and Information Processing, 14(3), 1650015 (21 pages).MathSciNetCrossRefMATH
Zurück zum Zitat Bernardo, L. M. (1996). ABCD matrix formalism of fractional Fourier optics. Optical Engineering, 35, 732–740.CrossRef Bernardo, L. M. (1996). ABCD matrix formalism of fractional Fourier optics. Optical Engineering, 35, 732–740.CrossRef
Zurück zum Zitat Bultheel, A., & Martinez-Sulbaran, H. (2007). Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bulletin of the Belgian Mathematical Society - Simon Stevin, 13, 971–1005.MathSciNetMATH Bultheel, A., & Martinez-Sulbaran, H. (2007). Recent developments in the theory of the fractional Fourier and linear canonical transforms. Bulletin of the Belgian Mathematical Society - Simon Stevin, 13, 971–1005.MathSciNetMATH
Zurück zum Zitat Debnath, L. (2001), Wavelet transforms and time-frequency signal analysis. Boston: Birkhäuser.CrossRefMATH Debnath, L. (2001), Wavelet transforms and time-frequency signal analysis. Boston: Birkhäuser.CrossRefMATH
Zurück zum Zitat Debnath, L., & Shah, F. A. (2015). Wavelet transforms and their applications (2nd ed.). Boston: Birkhäuser.MATH Debnath, L., & Shah, F. A. (2015). Wavelet transforms and their applications (2nd ed.). Boston: Birkhäuser.MATH
Zurück zum Zitat Gabor, D. (1946). Theory of communications. Journal of Institute of Electrical and Electronic Engineers London, 93, 429–457. Gabor, D. (1946). Theory of communications. Journal of Institute of Electrical and Electronic Engineers London, 93, 429–457.
Zurück zum Zitat Gelfand, I. M. (1950). Eigen function expansions for an equation with periodic coefficients. Doklady Akademii Nauk SSSR, 76, 1117–1120. Gelfand, I. M. (1950). Eigen function expansions for an equation with periodic coefficients. Doklady Akademii Nauk SSSR, 76, 1117–1120.
Zurück zum Zitat Healy, J. J., Kutay, M. A., Ozaktas, H. M., & Sheridan, J. T. (2016). Linear canonical transforms. New York: Springer.CrossRefMATH Healy, J. J., Kutay, M. A., Ozaktas, H. M., & Sheridan, J. T. (2016). Linear canonical transforms. New York: Springer.CrossRefMATH
Zurück zum Zitat Healy, J. J., & Sheridan, J. T. (2010). Fast linear canonical transforms. Journal of the Optical Society of America A, 27, 21–30.MathSciNetCrossRef Healy, J. J., & Sheridan, J. T. (2010). Fast linear canonical transforms. Journal of the Optical Society of America A, 27, 21–30.MathSciNetCrossRef
Zurück zum Zitat Hua, J., Liu, L., & Li, G. (1997). Extended fractional Fourier transforms. Journal of the Optical Society of America A, 14, 3316–3322.MathSciNetCrossRef Hua, J., Liu, L., & Li, G. (1997). Extended fractional Fourier transforms. Journal of the Optical Society of America A, 14, 3316–3322.MathSciNetCrossRef
Zurück zum Zitat James, D. F., & Agarwal, G. S. (1996). The generalized Fresnel transform and its applications to optics. Optics Communication, 126, 207–212.CrossRef James, D. F., & Agarwal, G. S. (1996). The generalized Fresnel transform and its applications to optics. Optics Communication, 126, 207–212.CrossRef
Zurück zum Zitat Koc, A., Ozaktas, H. M., Candan, C., & Kutay, M. A. (2008). Digital computation of linear canonical transforms. IEEE Transactions on Signal Processing, 56(6), 2383–2394.MathSciNetCrossRef Koc, A., Ozaktas, H. M., Candan, C., & Kutay, M. A. (2008). Digital computation of linear canonical transforms. IEEE Transactions on Signal Processing, 56(6), 2383–2394.MathSciNetCrossRef
Zurück zum Zitat Kou, K. I., & Xu, R. H. (2012). Windowed linear canonical transform and its applications. Signal Processing, 92, 179–188.CrossRef Kou, K. I., & Xu, R. H. (2012). Windowed linear canonical transform and its applications. Signal Processing, 92, 179–188.CrossRef
Zurück zum Zitat Moshinsky, M., & Quesne, C. (1971a). Linear canonical transformations and their unitary representations. Journal of Mathematical Physics, 12(8), 1772–1780. Moshinsky, M., & Quesne, C. (1971a). Linear canonical transformations and their unitary representations. Journal of Mathematical Physics, 12(8), 1772–1780.
Zurück zum Zitat Moshinsky, M., & Quesne, C. (1971b). Linear canonical transformations and matrix elements. Journal of Mathematical Physics, 12(8), 1780–1783. Moshinsky, M., & Quesne, C. (1971b). Linear canonical transformations and matrix elements. Journal of Mathematical Physics, 12(8), 1780–1783.
Zurück zum Zitat Palma, C., & Bagini, V. (1997). Extension of the Fresnel transform to ABCD systems. Journal of the Optical Society of America A, 14, 1774–1779.MathSciNetCrossRef Palma, C., & Bagini, V. (1997). Extension of the Fresnel transform to ABCD systems. Journal of the Optical Society of America A, 14, 1774–1779.MathSciNetCrossRef
Zurück zum Zitat Shi, J., Liu, X., & Zhang, N. (2014). Generalized convolution and product theorems associated with linear canonical transform. SIViP, 8, 967–974.CrossRef Shi, J., Liu, X., & Zhang, N. (2014). Generalized convolution and product theorems associated with linear canonical transform. SIViP, 8, 967–974.CrossRef
Zurück zum Zitat Siegman, A. E. (1986). Lasers. Mill Valley, CA: University Science Books. Siegman, A. E. (1986). Lasers. Mill Valley, CA: University Science Books.
Zurück zum Zitat Stankovic, L., Alieva, T., & Bastiaans, M. J. (2003). Time-frequency signal analysis based on the windowed fractional Fourier transform. Signal Processing, 83, 2459–2468.CrossRefMATH Stankovic, L., Alieva, T., & Bastiaans, M. J. (2003). Time-frequency signal analysis based on the windowed fractional Fourier transform. Signal Processing, 83, 2459–2468.CrossRefMATH
Zurück zum Zitat Tao, R., Li, Y. L., & Wang, Y. (2010). Short-time fractional Fourier transform and its applications. IEEE Transactions on Signal Processing, 58, 2568–2580.MathSciNetCrossRef Tao, R., Li, Y. L., & Wang, Y. (2010). Short-time fractional Fourier transform and its applications. IEEE Transactions on Signal Processing, 58, 2568–2580.MathSciNetCrossRef
Zurück zum Zitat Zak, J. (1967). Finite translation in solid state physics. Physical Review Letters, 19, 1385–1397.CrossRef Zak, J. (1967). Finite translation in solid state physics. Physical Review Letters, 19, 1385–1397.CrossRef
Zurück zum Zitat Zak, J. (1968). Dynamics of electrons in solids in external fields. Physical Review, 168, 686–695.CrossRef Zak, J. (1968). Dynamics of electrons in solids in external fields. Physical Review, 168, 686–695.CrossRef
Metadaten
Titel
The Time-Frequency Analysis
verfasst von
Lokenath Debnath
Firdous A. Shah
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59433-0_2

Premium Partner