Skip to main content
Erschienen in: Thermal Engineering 7/2021

01.07.2021 | DISTRICT HEATING COGENERATION AND HEAT-SUPPLY NETWORKS

The Use of the Heat-Accumulation Properties of Heat-Supply Networks and Buildings for the Extension of the Electric Power Output Control Range at Combined Heat and Power Plants

verfasst von: R. Z. Aminov, E. Yu. Burdenkova, A. B. Moskalenko

Erschienen in: Thermal Engineering | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a result of the lack of flexible capacities and an increase in the fraction of nuclear power plants in European Russia, the combined heat and power (CHP) plants currently need offloading during the off-peak hours of electric power demand. The adjustment of electric power demand necessitates additionally increasing the electric power of the power-generating units in the on-peak hours and decreasing it at nighttime. The existing methods for increasing the power of combined heat and power plants suffer from a number of serious drawbacks. The reduction in the electric power in the heating period is restricted, as a rule, by high heat demand. In this work, we show the possibility of extending the control range of the electric power output at CHP plants through the use of the heat-accumulation properties of the heat-supply networks and buildings and, accordingly, through the changeover of the operating modes of the cogeneration plant. Several operating-mode variants of the cogeneration plant are considered. The calculations conducted show that the consideration of the heat-accumulation properties of the heat-supply networks and buildings allows, having reduced the electric output of the CHP plant at nighttime, for an increase in the thermal output to increase the electric output in the day reducing the thermal output. An important requirement for the heat supply to buildings is the maintenance of comfortable indoor conditions. The optimal permissible temperature range for living space in the cold period of the year is 20–22°C. The possibility of ensuring the comfortable conditions indoors is confirmed by the calculations of the indoor air temperature by the method previously proposed by the authors that considers the heat-accumulation properties of the heat-supply networks and buildings. The indoor air temperature decreases by the end of the discharge period, i.e., the time when the accumulated heat has been consumed, to approximately 19°C; consequently, it does not go down below the permissible range. It should be noted that this is predominantly due to the heat-accumulation properties of the buildings. The material of the main heating system pipelines has a low accumulation capacity, i.e., the pipe walls transfer heat rapidly to the water that enters the pipeline at a temperature lower than that of the pipes. However, due to the considerable length of the heat system’s pipelines, the temperature of the heating-system water that arrives at the consumer remains constant at the time moment after the temperature perturbance on the heat source.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat https://studopedia.net/13_35499_rezhim-raboti-po-teplovomu-grafiku.html https://studopedia.net/13_35499_rezhim-raboti-po-teplovomu-grafiku.html
2.
Zurück zum Zitat A. D. Trukhnii and B. V. Lomakin, Cogeneration Steam Turbines and Turbine Plants (Mosk. Energ. Inst., Moscow, 2017). A. D. Trukhnii and B. V. Lomakin, Cogeneration Steam Turbines and Turbine Plants (Mosk. Energ. Inst., Moscow, 2017).
3.
4.
Zurück zum Zitat V. Ya. Girshfel’d, “Analysis of heat supply regimes at a heating combined heat and power plant with consideration of the uncertainty of the initial information,” Teploenergetika, No. 8, 48–52 (1988). V. Ya. Girshfel’d, “Analysis of heat supply regimes at a heating combined heat and power plant with consideration of the uncertainty of the initial information,” Teploenergetika, No. 8, 48–52 (1988).
5.
Zurück zum Zitat V. I. Panferov, “Identification of thermal regimes of pipeline systems,” Vestn. YuUrGU, Ser.: Stroit. Arkhit., No. 13 (53), 85–90 (2005). V. I. Panferov, “Identification of thermal regimes of pipeline systems,” Vestn. YuUrGU, Ser.: Stroit. Arkhit., No. 13 (53), 85–90 (2005).
6.
Zurück zum Zitat S. A. Ivanov, A. G. Batukhtin, and N. V. Goryachikh, “Some methods for making cogeneration stations more maneuverable,” Therm. Eng. 57, 892–896 (2010).CrossRef S. A. Ivanov, A. G. Batukhtin, and N. V. Goryachikh, “Some methods for making cogeneration stations more maneuverable,” Therm. Eng. 57, 892–896 (2010).CrossRef
7.
Zurück zum Zitat V. Ya. Girshfel’d, A. M. Knyazev, and V. E. Kulikov, Thermal Power Plant Operation Modes and Conditions: Textbook (Energiya, Moscow, 1980) [in Russian]. V. Ya. Girshfel’d, A. M. Knyazev, and V. E. Kulikov, Thermal Power Plant Operation Modes and Conditions: Textbook (Energiya, Moscow, 1980) [in Russian].
8.
Zurück zum Zitat R. Z. Aminov, Vector Optimization of Power Plant Operation Modes (Energoatomizdat, Moscow, 1994) [in Russian]. R. Z. Aminov, Vector Optimization of Power Plant Operation Modes (Energoatomizdat, Moscow, 1994) [in Russian].
9.
Zurück zum Zitat B. V. Yakovlev, Increasing the Efficiency of District Heating and Heat Supply Systems (Nov. Teplosnabzh., Moscow, 2008) [in Russian]. B. V. Yakovlev, Increasing the Efficiency of District Heating and Heat Supply Systems (Nov. Teplosnabzh., Moscow, 2008) [in Russian].
10.
Zurück zum Zitat R. Z. Aminov and E. Yu. Burdenkova, “Assessment of the effect of accumulating properties of heating networks on the delay of temperature changes at the consumer,” Tr. Akademenergo, No. 2, 38–45 (2016). R. Z. Aminov and E. Yu. Burdenkova, “Assessment of the effect of accumulating properties of heating networks on the delay of temperature changes at the consumer,” Tr. Akademenergo, No. 2, 38–45 (2016).
11.
Zurück zum Zitat R. Z. Aminov and E. Yu. Burdenkova, “Assessment of the effect of the accumulating properties of heated buildings on the change in indoor air temperature,” Tr. Akademenergo, No. 2, 45–52 (2018). R. Z. Aminov and E. Yu. Burdenkova, “Assessment of the effect of the accumulating properties of heated buildings on the change in indoor air temperature,” Tr. Akademenergo, No. 2, 45–52 (2018).
12.
Zurück zum Zitat R. Z. Aminov and E. Yu. Burdenkova, “Studying of possible operating modes in graphics of electric loads of combined heat and power plants taking into account heat-sink properties of thermal networks,” in Proc. Int. Multi-Conf. on Industrial Engineering and Modern Technologies (FarEastCon-2019), Vladivostok, Russia, Oct. 1–4, 2019 (IEEE, Piscataway, N. J., 2019), pp. 1–6. https://doi.org/10.1109/FarEastCon.2019.8934127 R. Z. Aminov and E. Yu. Burdenkova, “Studying of possible operating modes in graphics of electric loads of combined heat and power plants taking into account heat-sink properties of thermal networks,” in Proc. Int. Multi-Conf. on Industrial Engineering and Modern Technologies (FarEastCon-2019), Vladivostok, Russia, Oct. 1–4, 2019 (IEEE, Piscataway, N. J., 2019), pp. 1–6. https://​doi.​org/​10.​1109/​FarEastCon.​2019.​8934127
13.
Zurück zum Zitat The Standard Specified Characteristic of a Turbine Generator Unit T-100-130 (STsNTI ORGRES, Moscow, 1971). The Standard Specified Characteristic of a Turbine Generator Unit T-100-130 (STsNTI ORGRES, Moscow, 1971).
14.
Zurück zum Zitat E. I. Benenson and L. S. Ioffe, Cogeneration Steam Turbines (Energoatomizdat, Moscow, 1986) [in Russian]. E. I. Benenson and L. S. Ioffe, Cogeneration Steam Turbines (Energoatomizdat, Moscow, 1986) [in Russian].
15.
Zurück zum Zitat V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer (Energoatomizdat, Moscow, 1981; Mir, Moscow, 1981). V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer (Energoatomizdat, Moscow, 1981; Mir, Moscow, 1981).
16.
Zurück zum Zitat E. Ya. Sokolov, District Heating Cogeneration and Heat Networks (Mosk. Energ. Inst., Moscow, 2001) [in Russian]. E. Ya. Sokolov, District Heating Cogeneration and Heat Networks (Mosk. Energ. Inst., Moscow, 2001) [in Russian].
17.
Zurück zum Zitat V. A. Petrushchenkov, “Substantiation of a lowered temperature schedule for regulating centralized heat supply systems,” Nov. Teplosnabzh., No. 8, 30–37 (2015). V. A. Petrushchenkov, “Substantiation of a lowered temperature schedule for regulating centralized heat supply systems,” Nov. Teplosnabzh., No. 8, 30–37 (2015).
18.
Zurück zum Zitat A. K. Tikhomirov, Heat Supply of a City District: Training Manual (Izd. Tikhookean. Gos. Univ, Khabarovsk, 2006) [in Russian]. A. K. Tikhomirov, Heat Supply of a City District: Training Manual (Izd. Tikhookean. Gos. Univ, Khabarovsk, 2006) [in Russian].
19.
Zurück zum Zitat V. I. Manyuk, Ya. I. Kaplinskii, E. B. Khizh, A. I. Manyuk, and V. K. Il’in, Adjustment and Operation of Water Heating Networks (Stroiizdat, Moscow, 1988) [in Russian]. V. I. Manyuk, Ya. I. Kaplinskii, E. B. Khizh, A. I. Manyuk, and V. K. Il’in, Adjustment and Operation of Water Heating Networks (Stroiizdat, Moscow, 1988) [in Russian].
20.
Zurück zum Zitat GOST 30494-2011. Residential and Public Buildings. Parameters of Indoor Microclimate (Standartinform, Moscow, 2013). GOST 30494-2011. Residential and Public Buildings. Parameters of Indoor Microclimate (Standartinform, Moscow, 2013).
Metadaten
Titel
The Use of the Heat-Accumulation Properties of Heat-Supply Networks and Buildings for the Extension of the Electric Power Output Control Range at Combined Heat and Power Plants
verfasst von
R. Z. Aminov
E. Yu. Burdenkova
A. B. Moskalenko
Publikationsdatum
01.07.2021
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 7/2021
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601521050037

Weitere Artikel der Ausgabe 7/2021

Thermal Engineering 7/2021 Zur Ausgabe

ZAO SCIENTIFIC PRODUCTION AND INNOVATION ENTERPRISE TURBOCON TURNS 30

Turbogenerating Units for Cogeneration and Distributed Power Plants

    Premium Partner