Skip to main content

2023 | OriginalPaper | Buchkapitel

The Vertex-Edge Separator Transformation Problem in Network-Dismantling

verfasst von : Xiao-Long Ren

Erschienen in: Complex Networks and Their Applications XI

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In complex networks, network-dismantling aims at finding an optimal set of nodes (or edges) such that the removal of the set from the network will lead to the disintegration of the network, that is, the size of the giant/largest connected component is not bigger than a specific threshold (for instance, \(1\%\) of the original network size). Existing algorithms addressing this topic can be divided into two closely related but different categories: vertex separator-oriented algorithms and edge separator-oriented algorithms. There has been a lot of research on these two categories, respectively. However, to the best of our knowledge, less attention has been paid to the relation between the vertex separator and edge separator. In this paper, we studied the separator transformation (ST) problem between the separator of the vertexes and edges. We approximated the transformation from edge separator to vertex separator using Vertex Cover algorithm, while approximated the transformation from vertex separator to edge separator using an Explosive Percolation (EP) approach. Moreover, we further analyzed the results of the vertex-edge separator transformation through the explosive percolation method in detail. The transformation problem in network-dismantling opens up a new direction for understanding the role of the vital nodes set and edges set as well as the vulnerability of complex systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barabási, A.-L.: Network Science. Cambridge University Press (2016) Barabási, A.-L.: Network Science. Cambridge University Press (2016)
2.
Zurück zum Zitat Newman, M.E.J.: Networks. Oxford University Press (2018) Newman, M.E.J.: Networks. Oxford University Press (2018)
3.
Zurück zum Zitat Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)CrossRef Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)CrossRef
4.
Zurück zum Zitat Gladwell, M.: The Tipping Point: How Little Things can Make a Big Difference. Little, Brown (2006) Gladwell, M.: The Tipping Point: How Little Things can Make a Big Difference. Little, Brown (2006)
5.
Zurück zum Zitat Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)CrossRef Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)CrossRef
6.
Zurück zum Zitat Jiang, J., Huang, Z.-G., Seager, T.P., Lin, W., Grebogi, C., Hastings, A., Lai, Y.-C.: Predicting tipping points in mutualistic networks through dimension reduction. Proc. Nat. Acad. Sci. U.S.A. 115(4), E639–E647 (2018)CrossRefMATH Jiang, J., Huang, Z.-G., Seager, T.P., Lin, W., Grebogi, C., Hastings, A., Lai, Y.-C.: Predicting tipping points in mutualistic networks through dimension reduction. Proc. Nat. Acad. Sci. U.S.A. 115(4), E639–E647 (2018)CrossRefMATH
7.
Zurück zum Zitat Liu, X., Li, D., Ma, M., Szymanski, B.K., Stanley, H.E., Gao, J.: Network resilience. Phys. Rep. 971, 1–108 (2022)CrossRefMATH Liu, X., Li, D., Ma, M., Szymanski, B.K., Stanley, H.E., Gao, J.: Network resilience. Phys. Rep. 971, 1–108 (2022)CrossRefMATH
8.
Zurück zum Zitat Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRef Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)CrossRef
9.
Zurück zum Zitat Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–68 (2015)CrossRef Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–68 (2015)CrossRef
10.
Zurück zum Zitat Liu, Y.-Y., Barabási, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)CrossRef Liu, Y.-Y., Barabási, A.-L.: Control principles of complex systems. Rev. Mod. Phys. 88(3), 035006 (2016)CrossRef
11.
Zurück zum Zitat Amani, A.M., Jalili, M., Yu, X., Stone, L.: Controllability of complex networks: choosing the best driver set. Phys. Rev. E 98(3), 030302 (2018)CrossRef Amani, A.M., Jalili, M., Yu, X., Stone, L.: Controllability of complex networks: choosing the best driver set. Phys. Rev. E 98(3), 030302 (2018)CrossRef
12.
Zurück zum Zitat Zhang, Y., Garas, A., Schweitzer, F.: Control contribution identifies top driver nodes in complex networks. Advan. Complex Syst. 22(07n08), 1950014 (2019) Zhang, Y., Garas, A., Schweitzer, F.: Control contribution identifies top driver nodes in complex networks. Advan. Complex Syst. 22(07n08), 1950014 (2019)
13.
Zurück zum Zitat Del Ferraro, G., Moreno, A., Min, B., Morone, F., Pérez-Ramírez, Ú., Pérez-Cervera, L., Parra, L.C., Holodny, A., Canals, S., Makse, H.A.: Finding influential nodes for integration in brain networks using optimal percolation theory. Nat. Commun. 9(1), 2274 (2018)CrossRef Del Ferraro, G., Moreno, A., Min, B., Morone, F., Pérez-Ramírez, Ú., Pérez-Cervera, L., Parra, L.C., Holodny, A., Canals, S., Makse, H.A.: Finding influential nodes for integration in brain networks using optimal percolation theory. Nat. Commun. 9(1), 2274 (2018)CrossRef
14.
Zurück zum Zitat Tahmassebi, A., Amani, A.M., Pinker-Domenig, K., Meyer-Baese, A.: Determining disease evolution driver nodes in dementia networks. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10578, p. 1057829. International Society for Optics and Photonics (2018) Tahmassebi, A., Amani, A.M., Pinker-Domenig, K., Meyer-Baese, A.: Determining disease evolution driver nodes in dementia networks. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10578, p. 1057829. International Society for Optics and Photonics (2018)
15.
Zurück zum Zitat Janson, S., Thomson, A.: Dismantling sparse random graphs. Comb. Probab. Comput. 17(2), 259–264 (2008)CrossRefMATH Janson, S., Thomson, A.: Dismantling sparse random graphs. Comb. Probab. Comput. 17(2), 259–264 (2008)CrossRefMATH
16.
Zurück zum Zitat Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Nat. Acad. Sci. U.S.A. 113(44), 12368–12373 (2016)CrossRef Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Nat. Acad. Sci. U.S.A. 113(44), 12368–12373 (2016)CrossRef
17.
Zurück zum Zitat Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Nat. Acad. Sci. U.S.A. 116(14), 6554–6559 (2019)CrossRefMATH Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Nat. Acad. Sci. U.S.A. 116(14), 6554–6559 (2019)CrossRefMATH
18.
Zurück zum Zitat Fan, C., Zeng, L., Sun, Y., Liu, Y.-Y.: Finding key players in complex networks through deep reinforcement learning. In: Nature Machine Intelligence, pp. 1–8 (2020) Fan, C., Zeng, L., Sun, Y., Liu, Y.-Y.: Finding key players in complex networks through deep reinforcement learning. In: Nature Machine Intelligence, pp. 1–8 (2020)
19.
Zurück zum Zitat Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRef Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRef
20.
Zurück zum Zitat Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)CrossRef Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)CrossRef
21.
Zurück zum Zitat Zdeborová, L., Zhang, P., Zhou, H.-J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6, 37954 (2016)CrossRef Zdeborová, L., Zhang, P., Zhou, H.-J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6, 37954 (2016)CrossRef
22.
Zurück zum Zitat Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)CrossRef Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)CrossRef
23.
Zurück zum Zitat Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, J.R., Zecchina, R.: Containing epidemic outbreaks by message-passing techniques. Phys. Rev. X 4(2), 21024 (2014) Altarelli, F., Braunstein, A., Dall’Asta, L., Wakeling, J.R., Zecchina, R.: Containing epidemic outbreaks by message-passing techniques. Phys. Rev. X 4(2), 21024 (2014)
24.
Zurück zum Zitat Mugisha, S., Zhou, H.-J.: Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305 (2016)CrossRef Mugisha, S., Zhou, H.-J.: Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305 (2016)CrossRef
25.
Zurück zum Zitat Qin, S.-M., Ren, X.-L., Lü, L.: Efficient network dismantling via node explosive percolation. Commun. Theor. Phys. 71(6), 764 (2019)CrossRefMATH Qin, S.-M., Ren, X.-L., Lü, L.: Efficient network dismantling via node explosive percolation. Commun. Theor. Phys. 71(6), 764 (2019)CrossRefMATH
26.
Zurück zum Zitat Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)CrossRefMATH Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)CrossRefMATH
27.
Zurück zum Zitat Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. J. ACM (JACM) 56(2), 1–37 (2009)CrossRefMATH Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. J. ACM (JACM) 56(2), 1–37 (2009)CrossRefMATH
28.
Zurück zum Zitat Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)CrossRefMATH Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)CrossRefMATH
29.
Zurück zum Zitat Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3), 701–719 (1998)CrossRefMATH Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3), 701–719 (1998)CrossRefMATH
30.
Zurück zum Zitat Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nat. Commun. 12(1), 1–10 (2021)CrossRef Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nat. Commun. 12(1), 1–10 (2021)CrossRef
31.
Zurück zum Zitat Bichot, C.-E., Siarry, P.: Graph Partitioning. Wiley (2013) Bichot, C.-E., Siarry, P.: Graph Partitioning. Wiley (2013)
32.
Zurück zum Zitat Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering, pp. 117–158 (2016) Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering, pp. 117–158 (2016)
33.
Zurück zum Zitat Wandelt, S., Sun, X., Feng, D., Zanin, M., Havlin, S.: A comparative analysis of approaches to network-dismantling. Sci. Rep. 8(1), 1–15 (2018)CrossRef Wandelt, S., Sun, X., Feng, D., Zanin, M., Havlin, S.: A comparative analysis of approaches to network-dismantling. Sci. Rep. 8(1), 1–15 (2018)CrossRef
34.
Zurück zum Zitat Pei, S., Wang, J., Morone, F., Makse, H.A.: Influencer identification in dynamical complex systems. J. Complex Netw. 8(2) (2019) Pei, S., Wang, J., Morone, F., Makse, H.A.: Influencer identification in dynamical complex systems. J. Complex Netw. 8(2) (2019)
35.
Zurück zum Zitat Bellingeri, M., Bevacqua, D., Scotognella, F., Alfieri, R., Nguyen, Q., Montepietra, D., Cassi, D.: Link and node removal in real social networks: a review. Front. Phys. 8, 228 (2020)CrossRef Bellingeri, M., Bevacqua, D., Scotognella, F., Alfieri, R., Nguyen, Q., Montepietra, D., Cassi, D.: Link and node removal in real social networks: a review. Front. Phys. 8, 228 (2020)CrossRef
36.
Zurück zum Zitat Ren, X.-L., Antulov-Fantulin, N.: Ensemble approach for generalized network dismantling. In: International Conference on Complex Networks and Their Applications, pp. 783–793. Springer (2019) Ren, X.-L., Antulov-Fantulin, N.: Ensemble approach for generalized network dismantling. In: International Conference on Complex Networks and Their Applications, pp. 783–793. Springer (2019)
37.
Zurück zum Zitat Fan, C., Zeng, L., Feng, Y., Xiu, B., Huang, J., Liu, Z.: Revisiting the power of reinsertion for optimal targets of network attack. J. Cloud Comput. 9(24), 1–13 (2020) Fan, C., Zeng, L., Feng, Y., Xiu, B., Huang, J., Liu, Z.: Revisiting the power of reinsertion for optimal targets of network attack. J. Cloud Comput. 9(24), 1–13 (2020)
38.
Zurück zum Zitat Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)CrossRefMATH Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)CrossRefMATH
39.
Zurück zum Zitat König, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38(1031), 116–119 (1931) König, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38(1031), 116–119 (1931)
40.
Zurück zum Zitat Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)CrossRefMATH Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)CrossRefMATH
41.
Zurück zum Zitat Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science 323(5920), 1453–1455 (2009)CrossRefMATH Achlioptas, D., D’Souza, R.M., Spencer, J.: Explosive percolation in random networks. Science 323(5920), 1453–1455 (2009)CrossRefMATH
42.
Zurück zum Zitat Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefMATH Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefMATH
43.
Zurück zum Zitat Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Optimizing spread dynamics on graphs by message passing. J. Stat. Mech.: Theory Exp. 2013(09), P09011 (2013)CrossRefMATH Altarelli, F., Braunstein, A., Dall’Asta, L., Zecchina, R.: Optimizing spread dynamics on graphs by message passing. J. Stat. Mech.: Theory Exp. 2013(09), P09011 (2013)CrossRefMATH
44.
Zurück zum Zitat Ren, X.-L.: The dismantling problem in complex networks and its applications. Ph.D. thesis. ETH Zurich (2021) Ren, X.-L.: The dismantling problem in complex networks and its applications. Ph.D. thesis. ETH Zurich (2021)
45.
Zurück zum Zitat Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)CrossRef Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002)CrossRef
46.
Zurück zum Zitat Trajanovski, S., Scellato, S., Leontiadis, I.: Error and attack vulnerability of temporal networks. Phys. Rev. E 85, 066105 (2012)CrossRef Trajanovski, S., Scellato, S., Leontiadis, I.: Error and attack vulnerability of temporal networks. Phys. Rev. E 85, 066105 (2012)CrossRef
Metadaten
Titel
The Vertex-Edge Separator Transformation Problem in Network-Dismantling
verfasst von
Xiao-Long Ren
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-21131-7_36

Premium Partner