Skip to main content
Erschienen in: Strength of Materials 1/2023

15.04.2023

Theoretical Estimation of the Endurance Limit of Metal Materials by the Characteristics of Their Static Strength and Microstructure Based on the Linear-Elastic Fracture Mechanics

verfasst von: O. M. Herasymchuk

Erschienen in: Strength of Materials | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A methodology for theoretically estimating the endurance limit of a material for conditions of multicycle fatigue is proposed. The estimation is based on the fact that under these conditions, a nonpropagating surface fatigue crack of one grain size exists at the level of the applied stress range equal to the endurance limit. In this regard, the tools of linear-elastic fracture mechanics were used in the development of the methodology, but with corrections for the size and geometry of a short fatigue crack. The methodology allows for estimating the endurance limit of smooth specimens under symmetric and positive stress ratios of the loading cycle. The initial data for the estimation are the characteristics of the static strength and microstructure of the material. The reliability of the proposed estimation is confirmed by experimental fatigue data for structural alloys of various classes taken from the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASTM E466-15. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials (2015). ASTM E466-15. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials (2015).
2.
Zurück zum Zitat O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).CrossRef O. M. Herasymchuk, “Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure,” Int. J. Fatigue, 33, 649–659 (2011).CrossRef
3.
Zurück zum Zitat M. D. Chapetti, “Fatigue propagation threshold of short cracks under constant amplitude loading,” Int. J. Fatigue, 25, 1319–1326 (2003).CrossRef M. D. Chapetti, “Fatigue propagation threshold of short cracks under constant amplitude loading,” Int. J. Fatigue, 25, 1319–1326 (2003).CrossRef
4.
Zurück zum Zitat M. H. El Haddad, T. H. Topper, and K. N. Smith, “Prediction of non propagating cracks,” Eng. Fract. Mech., 11, No. 3, 573–584 (1979).CrossRef M. H. El Haddad, T. H. Topper, and K. N. Smith, “Prediction of non propagating cracks,” Eng. Fract. Mech., 11, No. 3, 573–584 (1979).CrossRef
5.
Zurück zum Zitat A. J. McEvily, M. Endo, and Y. Murakami, “On the \(\sqrt{area}\) relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003).CrossRef A. J. McEvily, M. Endo, and Y. Murakami, “On the \(\sqrt{area}\) relationship and the short fatigue threshold,” Fatigue Fract. Eng. Mater. Struct., 26, 269–278 (2003).CrossRef
6.
Zurück zum Zitat ASTM E647-00. Standard Test Method for Measurements of Fatigue Crack Growth Rates (2000). ASTM E647-00. Standard Test Method for Measurements of Fatigue Crack Growth Rates (2000).
7.
Zurück zum Zitat H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. of Mechanical Behavior of Materials, ASM, Metals Park, OH (1976), pp. 627–631. H. Kitagawa and S. Takahashi, “Applicability of fracture mechanics to very small cracks or the cracks in the early stage,” in: Proc. of the Second Int. Conf. of Mechanical Behavior of Materials, ASM, Metals Park, OH (1976), pp. 627–631.
8.
Zurück zum Zitat U. Krupp, Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts, Wiley-VCH, Weinheim (2007).CrossRef U. Krupp, Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts, Wiley-VCH, Weinheim (2007).CrossRef
9.
Zurück zum Zitat R. W. Hertzberg, “A simple calculation of \(da/dN-\Delta K\) data in the near threshold regime and above,” Int. J. Fracture, 64, 53–58 (1993).CrossRef R. W. Hertzberg, “A simple calculation of \(da/dN-\Delta K\) data in the near threshold regime and above,” Int. J. Fracture, 64, 53–58 (1993).CrossRef
10.
Zurück zum Zitat O. M. Herasymchuk, “Microstructurally-dependent model for predicting the kinetics of physically small and long fatigue crack growth,” Int. J. Fatigue, 81, 148–161 (2015).CrossRef O. M. Herasymchuk, “Microstructurally-dependent model for predicting the kinetics of physically small and long fatigue crack growth,” Int. J. Fatigue, 81, 148–161 (2015).CrossRef
11.
Zurück zum Zitat J. P. Lukas and W. W. Gerberich, “A proposed criterion for fatigue threshold: dislocation substructure approach,” Fatigue Fract. Eng. Mater. Struct., 6, 271–280 (1983).CrossRef J. P. Lukas and W. W. Gerberich, “A proposed criterion for fatigue threshold: dislocation substructure approach,” Fatigue Fract. Eng. Mater. Struct., 6, 271–280 (1983).CrossRef
12.
Zurück zum Zitat T. Hanlon, E. D. Tabachnikova, and S. Suresh, “Fatigue behavior of nanocrystalline metals and alloys,” Int. J. Fatigue, 27, 1147–1158 (2005).CrossRef T. Hanlon, E. D. Tabachnikova, and S. Suresh, “Fatigue behavior of nanocrystalline metals and alloys,” Int. J. Fatigue, 27, 1147–1158 (2005).CrossRef
13.
Zurück zum Zitat O. M. Herasymchuk, O. V. Kononuchenko, P. E. Markovsky, and V. I. Bondarchuk, “Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude,” Int. J. Fatigue, 83, 313–322 (2016).CrossRef O. M. Herasymchuk, O. V. Kononuchenko, P. E. Markovsky, and V. I. Bondarchuk, “Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude,” Int. J. Fatigue, 83, 313–322 (2016).CrossRef
14.
Zurück zum Zitat J. O. Peters, B. L. Boyce, X. Chen, et al., “On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue,” Eng. Fract. Mech., 69, 1425–1446 (2002).CrossRef J. O. Peters, B. L. Boyce, X. Chen, et al., “On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue,” Eng. Fract. Mech., 69, 1425–1446 (2002).CrossRef
16.
Zurück zum Zitat K. Tanaka, Y. Nakai, and Y. Yamashita, “Fatigue growth threshold of small cracks,” Int. J. Fracture, 17, No. 5, 519–533 (1981).CrossRef K. Tanaka, Y. Nakai, and Y. Yamashita, “Fatigue growth threshold of small cracks,” Int. J. Fracture, 17, No. 5, 519–533 (1981).CrossRef
17.
Zurück zum Zitat J. S. Park, S. J. Kim, K. H. Kim, et al., “A microstructural model for predicting high cycle fatigue life of steels,” Int. J. Fatigue, 27, 1115–1123 (2005).CrossRef J. S. Park, S. J. Kim, K. H. Kim, et al., “A microstructural model for predicting high cycle fatigue life of steels,” Int. J. Fatigue, 27, 1115–1123 (2005).CrossRef
18.
Zurück zum Zitat D. N. Hanlon and W. M. Rainforth, “Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA 7150,” Metall. Mater. Trans. A, 29, 2727–2736 (1998).CrossRef D. N. Hanlon and W. M. Rainforth, “Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA 7150,” Metall. Mater. Trans. A, 29, 2727–2736 (1998).CrossRef
19.
Zurück zum Zitat Y. Akiniwa and K. Tanaka, “Statistical characteristics of propagation of small fatigue crack in smooth specimens of aluminium alloy 2024-T3,” Mater. Sci. Eng. A, 104,105–115 (1988).CrossRef Y. Akiniwa and K. Tanaka, “Statistical characteristics of propagation of small fatigue crack in smooth specimens of aluminium alloy 2024-T3,” Mater. Sci. Eng. A, 104,105–115 (1988).CrossRef
20.
Zurück zum Zitat K. Tokaji, M. Kamakura, Y. Ishiizumi, and N. Hasegawa, “Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy,” Int. J. Fatigue, 26, 1217–1224 (2004).CrossRef K. Tokaji, M. Kamakura, Y. Ishiizumi, and N. Hasegawa, “Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy,” Int. J. Fatigue, 26, 1217–1224 (2004).CrossRef
Metadaten
Titel
Theoretical Estimation of the Endurance Limit of Metal Materials by the Characteristics of Their Static Strength and Microstructure Based on the Linear-Elastic Fracture Mechanics
verfasst von
O. M. Herasymchuk
Publikationsdatum
15.04.2023
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2023
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-023-00499-3

Weitere Artikel der Ausgabe 1/2023

Strength of Materials 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.