Skip to main content
Erschienen in: Topics in Catalysis 12-16/2019

14.05.2019 | Original Paper

Theoretical Study of the Water–Gas Shift Reaction on a Au/Hematite Model Catalyst

verfasst von: Silvia A. Fuente, Carolina Zubieta, Ricardo M. Ferullo, Patricia G. Belelli

Erschienen in: Topics in Catalysis | Ausgabe 12-16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the density functional theory, the mechanism of the water–gas shift reaction has been investigated employing a model catalyst formed by a Au5 cluster supported on the Fe-terminated (0001) face of hematite (α-Fe2O3), to better understand the role played by the metal–oxide interface in this reaction. Our results indicate that the Au5/hematite model catalyst has a good performance to catalyze the reaction following the so-called adsorptive mechanism. The presence of Au favors the development of the reaction due mainly to the following factors: (i) H2O dissociates very easily at the metal–oxide interface producing OH species; (ii) CO adsorbs strongly on a Au site nearby the position of OH; (iii) the hydroxycarbonyl intermediate (HOCO) is formed at the interface from CO and OH with a low activation barrier; and (iv) after hydrogen releasing, CO2 is desorbed with relative facility from the interface region. The formation of H2 is the stage of the whole reaction that more energy demands; however, this process is favored if one hydrogen atom comes directly from HOCO, instead of from two hydrogen atoms bound to surface oxygen anions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pal DB, Chand R, Upadhyay SN, Mishra PK (2018) Performance of water gas shift reaction catalysts: a review. Renew Sustain Energy Rev 93:549–565CrossRef Pal DB, Chand R, Upadhyay SN, Mishra PK (2018) Performance of water gas shift reaction catalysts: a review. Renew Sustain Energy Rev 93:549–565CrossRef
2.
Zurück zum Zitat Hong YK, Lee DW, Ko YC, Yinghua L, Han HS, Lee KY (2010) Passive NOx reduction with CO using Pd/TiO2/Al2O3 + WGSR catalysts under simulated post-Euro IV diesel exhaust conditions. Catal Lett 136:106–115CrossRef Hong YK, Lee DW, Ko YC, Yinghua L, Han HS, Lee KY (2010) Passive NOx reduction with CO using Pd/TiO2/Al2O3 + WGSR catalysts under simulated post-Euro IV diesel exhaust conditions. Catal Lett 136:106–115CrossRef
3.
Zurück zum Zitat Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev Sci Eng 44:423–453CrossRef Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev Sci Eng 44:423–453CrossRef
4.
Zurück zum Zitat Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) DRIFTS study of the water–gas shift reaction over Au/Fe2O3. J Catal 243:171–182CrossRef Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) DRIFTS study of the water–gas shift reaction over Au/Fe2O3. J Catal 243:171–182CrossRef
5.
Zurück zum Zitat Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRef Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRef
6.
Zurück zum Zitat Landon P, Ferguson J, Solsona BE, Garcia T, Carley AF, Herzing AA, Kiely CJ, Golunski SE, Hutchings GJ (2005) Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. Chem Commun 27:3385–3387CrossRef Landon P, Ferguson J, Solsona BE, Garcia T, Carley AF, Herzing AA, Kiely CJ, Golunski SE, Hutchings GJ (2005) Selective oxidation of CO in the presence of H2, H2O and CO2 via gold for use in fuel cells. Chem Commun 27:3385–3387CrossRef
7.
Zurück zum Zitat Andreeva D, Idakiev V, Tabakova T, Andreev A, Giovanoli R (1996) Low-temperature water–gas shift reaction on Au/α-Fe2O3 catalyst. Appl Catal A 134:275–283CrossRef Andreeva D, Idakiev V, Tabakova T, Andreev A, Giovanoli R (1996) Low-temperature water–gas shift reaction on Au/α-Fe2O3 catalyst. Appl Catal A 134:275–283CrossRef
8.
Zurück zum Zitat Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35:82–88CrossRef Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35:82–88CrossRef
9.
Zurück zum Zitat Venugopal A, Scurrell MS (2004) Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behavior in the water–gas shift reaction. Appl Catal A 258:241–249CrossRef Venugopal A, Scurrell MS (2004) Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behavior in the water–gas shift reaction. Appl Catal A 258:241–249CrossRef
10.
Zurück zum Zitat Kudo S, Maki T, Fukuda T, Mae K (2011) Pre-reduction of Au/iron oxide catalyst for low-temperature water-gas shift reaction below 150°C. Catalysts 1:175–190CrossRef Kudo S, Maki T, Fukuda T, Mae K (2011) Pre-reduction of Au/iron oxide catalyst for low-temperature water-gas shift reaction below 150°C. Catalysts 1:175–190CrossRef
11.
Zurück zum Zitat Soria MA, Pérez P, Carabineiro SAC, Maldonado-Hódar FJ, Mendes A, Madeira LM (2014) Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction. Appl Catal A 470:45–55CrossRef Soria MA, Pérez P, Carabineiro SAC, Maldonado-Hódar FJ, Mendes A, Madeira LM (2014) Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction. Appl Catal A 470:45–55CrossRef
12.
Zurück zum Zitat Luengnaruemitchai A, Osuwan S, Gulari E (2003) Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2 and Au/Fe2O3 catalysts. Catal Commun 4:215–221CrossRef Luengnaruemitchai A, Osuwan S, Gulari E (2003) Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2 and Au/Fe2O3 catalysts. Catal Commun 4:215–221CrossRef
13.
Zurück zum Zitat Bocuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185CrossRef Bocuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water-gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185CrossRef
14.
Zurück zum Zitat Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top Catal 44:199–208CrossRef Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions. Top Catal 44:199–208CrossRef
15.
Zurück zum Zitat Daniells ST, Makkee M, Moulijn JA (2005) The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catal Lett 100:39–47CrossRef Daniells ST, Makkee M, Moulijn JA (2005) The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catal Lett 100:39–47CrossRef
16.
Zurück zum Zitat Jiying W, Zhenzhong Z, Lan Z, Bifang M, Feng J (2012) Analysis or the active Au species on Au/Fe2O3 catalyst. Rare Met Mater Eng 41:377–382CrossRef Jiying W, Zhenzhong Z, Lan Z, Bifang M, Feng J (2012) Analysis or the active Au species on Au/Fe2O3 catalyst. Rare Met Mater Eng 41:377–382CrossRef
17.
Zurück zum Zitat Minicò S, Scirè S, Crisafulli C, Visco AM, Galvagno S (1997) FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catal Lett 47:273–276CrossRef Minicò S, Scirè S, Crisafulli C, Visco AM, Galvagno S (1997) FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catal Lett 47:273–276CrossRef
18.
Zurück zum Zitat Hodge NA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal Today 72:133–144CrossRef Hodge NA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal Today 72:133–144CrossRef
19.
Zurück zum Zitat Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130:1402–1414CrossRef Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 130:1402–1414CrossRef
20.
Zurück zum Zitat Fajín JLC, Cordeiro MDS, Illas F, Gomes JRB (2009) Influence of step sites in the molecular mechanism of the water gas shiftreaction catalyzed by copper. J Catal 268:131–141CrossRef Fajín JLC, Cordeiro MDS, Illas F, Gomes JRB (2009) Influence of step sites in the molecular mechanism of the water gas shiftreaction catalyzed by copper. J Catal 268:131–141CrossRef
21.
Zurück zum Zitat Wong K, Zeng QH, Yu AB (2011) Electronic structure of metal (M = Au, Pt, Pd, or Ru) bilayer modified & α-Fe2O3(0001) surfaces. J Phys Chem C 115:4656–4663CrossRef Wong K, Zeng QH, Yu AB (2011) Electronic structure of metal (M = Au, Pt, Pd, or Ru) bilayer modified & α-Fe2O3(0001) surfaces. J Phys Chem C 115:4656–4663CrossRef
22.
Zurück zum Zitat Kiejna A, Pabisiak T (2012) Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001). J Phys Condens Matter 24:095003CrossRef Kiejna A, Pabisiak T (2012) Surface properties of clean and Au or Pd covered hematite (α-Fe2O3) (0001). J Phys Condens Matter 24:095003CrossRef
23.
Zurück zum Zitat Pabisiak T, Winiarski MJ, Kiejna A (2016) CO adsorption on small Aun (n = 1–4) structures supported on hematite. I. Adsorption on iron terminated α-Fe2O3 (0001) surface. J Chem Phys 144:044704CrossRef Pabisiak T, Winiarski MJ, Kiejna A (2016) CO adsorption on small Aun (n = 1–4) structures supported on hematite. I. Adsorption on iron terminated α-Fe2O3 (0001) surface. J Chem Phys 144:044704CrossRef
24.
Zurück zum Zitat Pabisiak T, Winiarski MJ, Kiejna A (2016) CO adsorption on small Aun (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe2O3(0001) surface. J Chem Phys 144:044705CrossRef Pabisiak T, Winiarski MJ, Kiejna A (2016) CO adsorption on small Aun (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe2O3(0001) surface. J Chem Phys 144:044705CrossRef
25.
Zurück zum Zitat Nguyen MT, Farnesi Camellone M, Gebauer R (2015) On the electronic, structural, and thermodynamic properties of Au supported on α-Fe2O3 surfaces and their interaction with CO. J Chem Phys 143:034704CrossRef Nguyen MT, Farnesi Camellone M, Gebauer R (2015) On the electronic, structural, and thermodynamic properties of Au supported on α-Fe2O3 surfaces and their interaction with CO. J Chem Phys 143:034704CrossRef
26.
Zurück zum Zitat Howard KL, Willock DJ (2011) A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3. Faraday Discuss 152:135–151CrossRef Howard KL, Willock DJ (2011) A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3. Faraday Discuss 152:135–151CrossRef
27.
Zurück zum Zitat Fuente SA, Fortunato LF, Zubieta C, Ferullo RM, Belelli PG (2018) Water dissociation at the Au/α-Fe2O3(0001) interface. Mol Catal 446:10–22CrossRef Fuente SA, Fortunato LF, Zubieta C, Ferullo RM, Belelli PG (2018) Water dissociation at the Au/α-Fe2O3(0001) interface. Mol Catal 446:10–22CrossRef
28.
Zurück zum Zitat Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, WeinheimCrossRef Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-VCH, WeinheimCrossRef
29.
Zurück zum Zitat Thevuthasana S, Kim YJ, Yi SI, Chambers SA, Morais J, Denecke R, Fadley CS, Liuc P, Kendelewicz T, Brown GE Jr (1999) Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction. Surf Sci 425:276–286CrossRef Thevuthasana S, Kim YJ, Yi SI, Chambers SA, Morais J, Denecke R, Fadley CS, Liuc P, Kendelewicz T, Brown GE Jr (1999) Surface structure of MBE-grown α-Fe2O3(0001) by intermediate-energy X-ray photoelectron diffraction. Surf Sci 425:276–286CrossRef
30.
Zurück zum Zitat Chambers SA, Fe Yi SI (1999) termination for α-Fe2O3(0001) as grown by oxygen-plasma-assisted molecular beam epitaxy. Surf Sci Lett 439:L785–L791CrossRef Chambers SA, Fe Yi SI (1999) termination for α-Fe2O3(0001) as grown by oxygen-plasma-assisted molecular beam epitaxy. Surf Sci Lett 439:L785–L791CrossRef
31.
Zurück zum Zitat Shaikhutdinov SK, Weiss W (1999) Oxygen pressure dependence of the α-Fe2O3(0001) surface structure. Surf Sci Lett 432:L627–L634CrossRef Shaikhutdinov SK, Weiss W (1999) Oxygen pressure dependence of the α-Fe2O3(0001) surface structure. Surf Sci Lett 432:L627–L634CrossRef
32.
Zurück zum Zitat Wang XG, Weiss W, Shaikhutdinov SK, Ritter M, Peterson M, Wagner F, Schlögl R, Scheffler M (1998) The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry. Phys Rev Lett 81:1038–1041CrossRef Wang XG, Weiss W, Shaikhutdinov SK, Ritter M, Peterson M, Wagner F, Schlögl R, Scheffler M (1998) The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry. Phys Rev Lett 81:1038–1041CrossRef
33.
Zurück zum Zitat Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561CrossRef
34.
Zurück zum Zitat Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRef Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118CrossRef
35.
Zurück zum Zitat Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRef Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid–metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269CrossRef
36.
Zurück zum Zitat Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef
37.
Zurück zum Zitat Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48:4978CrossRef Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Erratum: atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 48:4978CrossRef
38.
Zurück zum Zitat Plata JJ, Graciani J, Evans J, Rodriguez JA, Fernández Sanz J (2016) Cu deposited on CeOx-modified TiO2(110): synergistic effects at the metal–oxide interface and the mechanism of the WGS reaction. ACS Catal 6:4608–4615CrossRef Plata JJ, Graciani J, Evans J, Rodriguez JA, Fernández Sanz J (2016) Cu deposited on CeOx-modified TiO2(110): synergistic effects at the metal–oxide interface and the mechanism of the WGS reaction. ACS Catal 6:4608–4615CrossRef
39.
Zurück zum Zitat Rodríguez JA, Evans J, Graciani J, Park JB, Liu P, Hrbek J, Fdez Sanz J (2009) High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size. J Phys Chem C 113:7364–7370CrossRef Rodríguez JA, Evans J, Graciani J, Park JB, Liu P, Hrbek J, Fdez Sanz J (2009) High water-gas shift activity in TiO2(110) supported Cu and Au nanoparticles: role of the oxide and metal particle size. J Phys Chem C 113:7364–7370CrossRef
40.
Zurück zum Zitat Peng SF, Ho JJ (2011) The mechanism of the water-gas shift reaction on Cu/TiO2(110) elucidated from application of density-functional theory. Phys Chem Chem Phys 13:20393–20400CrossRef Peng SF, Ho JJ (2011) The mechanism of the water-gas shift reaction on Cu/TiO2(110) elucidated from application of density-functional theory. Phys Chem Chem Phys 13:20393–20400CrossRef
41.
Zurück zum Zitat Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ (2013) Importance of the metal–oxide interface in catalysis. In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105CrossRef Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ (2013) Importance of the metal–oxide interface in catalysis. In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105CrossRef
42.
Zurück zum Zitat Blochl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef Blochl P (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef
43.
Zurück zum Zitat Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef
44.
Zurück zum Zitat Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69:165107CrossRef Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69:165107CrossRef
45.
Zurück zum Zitat Finger LW, Hazen RM (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. J Appl Phys 51:5362CrossRef Finger LW, Hazen RM (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 Kbars. J Appl Phys 51:5362CrossRef
46.
Zurück zum Zitat Coey J, Sawatzky G (1971) A study of hyperfine interactions in the system (Fe1−xRhx)2O3 using the Mossbauer effect (bonding parameters). J Phys C 4:2386–2407CrossRef Coey J, Sawatzky G (1971) A study of hyperfine interactions in the system (Fe1−xRhx)2O3 using the Mossbauer effect (bonding parameters). J Phys C 4:2386–2407CrossRef
47.
Zurück zum Zitat Yang CT, Wood BC, Bhethanabotla VR, Joseph B (2015) The effect of themorphology of supported subnanometer Pt clusters on the first and key step of CO2 photoreduction. Phys Chem Chem Phys 17:25379–25392CrossRef Yang CT, Wood BC, Bhethanabotla VR, Joseph B (2015) The effect of themorphology of supported subnanometer Pt clusters on the first and key step of CO2 photoreduction. Phys Chem Chem Phys 17:25379–25392CrossRef
48.
Zurück zum Zitat Barrio L, Liu P, Rodríguez JA, Campos-Martin JM, Fierro JLG (2006) A density functional theory study of the dissociation of H2 on gold clusters: importance of fluxionality and ensemble effects. J Chem Phys 125:164715CrossRef Barrio L, Liu P, Rodríguez JA, Campos-Martin JM, Fierro JLG (2006) A density functional theory study of the dissociation of H2 on gold clusters: importance of fluxionality and ensemble effects. J Chem Phys 125:164715CrossRef
49.
Zurück zum Zitat Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Science, Oxford Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Science, Oxford
50.
Zurück zum Zitat Shubina TE, Hartnig C, Koper MTM (2004) Density functional theory study of the oxidation of CO by OH on Au(110) and Pt(111) surfaces. Phys Chem Chem Phys 6:4215–4221CrossRef Shubina TE, Hartnig C, Koper MTM (2004) Density functional theory study of the oxidation of CO by OH on Au(110) and Pt(111) surfaces. Phys Chem Chem Phys 6:4215–4221CrossRef
51.
Zurück zum Zitat Plata JJ, Romero-Sarria F, Amaya Suárez J, Márquez AM, Laguna OH, Odriozola JA, Sanz JF (2018) Improving the activity of gold nanoparticles for the water gas shift reaction using TiO2-Y2O3: an example of catalysts design. Phys Chem Chem Phys 20:22076–22083CrossRef Plata JJ, Romero-Sarria F, Amaya Suárez J, Márquez AM, Laguna OH, Odriozola JA, Sanz JF (2018) Improving the activity of gold nanoparticles for the water gas shift reaction using TiO2-Y2O3: an example of catalysts design. Phys Chem Chem Phys 20:22076–22083CrossRef
52.
Zurück zum Zitat Liu ZP, Jenkins SJ, King DA (2005) Origin and activity of oxidized gold in water-gas-shift catalysis. Phys Rev Lett 94:196102CrossRef Liu ZP, Jenkins SJ, King DA (2005) Origin and activity of oxidized gold in water-gas-shift catalysis. Phys Rev Lett 94:196102CrossRef
53.
Zurück zum Zitat Chiang HN, Jiang JC (2013) Density functional theory study of water-gas-shift reaction on 3Cu/α-Al2O3(0001) surface. J Phys Chem C 117:12045–12053CrossRef Chiang HN, Jiang JC (2013) Density functional theory study of water-gas-shift reaction on 3Cu/α-Al2O3(0001) surface. J Phys Chem C 117:12045–12053CrossRef
54.
Zurück zum Zitat Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134:18109–18115CrossRef Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134:18109–18115CrossRef
55.
Zurück zum Zitat He Y, Liu JC, Luo L, Wang YG, Zhu J, Du Y, Li J, Mao SX, Wang C (2018) Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc Natl Acad Sci USA 115:7700–7705CrossRef He Y, Liu JC, Luo L, Wang YG, Zhu J, Du Y, Li J, Mao SX, Wang C (2018) Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition. Proc Natl Acad Sci USA 115:7700–7705CrossRef
56.
Zurück zum Zitat Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397CrossRef Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397CrossRef
Metadaten
Titel
Theoretical Study of the Water–Gas Shift Reaction on a Au/Hematite Model Catalyst
verfasst von
Silvia A. Fuente
Carolina Zubieta
Ricardo M. Ferullo
Patricia G. Belelli
Publikationsdatum
14.05.2019
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 12-16/2019
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-019-01174-1

Weitere Artikel der Ausgabe 12-16/2019

Topics in Catalysis 12-16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.