Skip to main content

2020 | OriginalPaper | Buchkapitel

Theory, Analyses and Predictions of Multifractal Formalism and Multifractal Modelling for Stroke Subtypes’ Classification

verfasst von : Yeliz Karaca, Dumitru Baleanu, Majaz Moonis, Yu-Dong Zhang

Erschienen in: Computational Science and Its Applications – ICCSA 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fractal and multifractal analysis interplay within complementary methodology is of pivotal importance in ubiquitously natural and man-made systems. Since the brain as a complex system operates on multitude of scales, the characterization of its dynamics through detection of self-similarity and regularity presents certain challenges. One framework to dig into complex dynamics and structure is to use intricate properties of multifractals. Morphological and functional points of view guide the analysis of the central nervous system (CNS). The former focuses on the fractal and self-similar geometry at various levels of analysis ranging from one single cell to complicated networks of cells. The latter point of view is defined by a hierarchical organization where self-similar elements are embedded within one another. Stroke is a CNS disorder that occurs via a complex network of vessels and arteries. Considering this profound complexity, the principal aim of this study is to develop a complementary methodology to enable the detection of subtle details concerning stroke which may easily be overlooked during the regular treatment procedures. In the proposed method of our study, multifractal regularization method has been employed for singularity analysis to extract the hidden patterns in stroke dataset with two different approaches. As the first approach, decision tree, Naïve bayes, kNN and MLP algorithms were applied to the stroke dataset. The second approach is made up of two stages: i) multifractal regularization (kulback normalization) method was applied to the stroke dataset and mFr_stroke dataset was generated. ii) the four algorithms stated above were applied to the mFr_stroke dataset. When we compared the experimental results obtained from the stroke dataset and mFr_stroke dataset based on accuracy (specificity, sensitivity, precision, F1-score and Matthews Correlation Coefficient), it was revealed that mFr_stroke dataset achieved higher accuracy rates. Our novel proposed approach can serve for the understanding and taking under control the transient features of stroke. Notably, the study has revealed the reliability, applicability and high accuracy via the methods proposed. Thus, the integrated method has revealed the significance of fractal patterns and accurate prediction of diseases in diagnostic and other critical-decision making processes in related fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roca, J.L., Rodrıguez-Bermudez, G., Fernandez-Martinez, M.: Fractal-based techniques for physiological time series: an updated approach. Open Phys. 16(1), 741–750 (2018)CrossRef Roca, J.L., Rodrıguez-Bermudez, G., Fernandez-Martinez, M.: Fractal-based techniques for physiological time series: an updated approach. Open Phys. 16(1), 741–750 (2018)CrossRef
2.
Zurück zum Zitat Di Ieva, A.: The Fractal Geometry of the Brain, vol. 585. Springer, New York (2016)CrossRef Di Ieva, A.: The Fractal Geometry of the Brain, vol. 585. Springer, New York (2016)CrossRef
3.
Zurück zum Zitat Li, Z., Liu, Z., Khan, M.A.: Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos, Solitons Fractals 131, 109528 (2020)MathSciNetCrossRef Li, Z., Liu, Z., Khan, M.A.: Fractional investigation of bank data with fractal-fractional Caputo derivative. Chaos, Solitons Fractals 131, 109528 (2020)MathSciNetCrossRef
4.
Zurück zum Zitat Karaca, Y., Zhang, Y.D., Muhammad, K.: Characterizing complexity and self-similarity based on fractal and entropy analyses for stock market forecast modelling. Expert Syst. Appl. 144, 113098 (2020)CrossRef Karaca, Y., Zhang, Y.D., Muhammad, K.: Characterizing complexity and self-similarity based on fractal and entropy analyses for stock market forecast modelling. Expert Syst. Appl. 144, 113098 (2020)CrossRef
6.
Zurück zum Zitat Dimri, V.P., Ganguli, S.S.: Fractal theory and its implication for acquisition, processing and interpretation (API) of geophysical investigation: a review. J. Geol. Soc. India 93(2), 142–152 (2019)CrossRef Dimri, V.P., Ganguli, S.S.: Fractal theory and its implication for acquisition, processing and interpretation (API) of geophysical investigation: a review. J. Geol. Soc. India 93(2), 142–152 (2019)CrossRef
7.
Zurück zum Zitat Nottale, L.: Scale relativity and fractal space-time: theory and applications. Found. Sci. 15(2), 101–152 (2010)MathSciNetCrossRef Nottale, L.: Scale relativity and fractal space-time: theory and applications. Found. Sci. 15(2), 101–152 (2010)MathSciNetCrossRef
8.
Zurück zum Zitat Petrica, V., Maricel, A.: On the transport phenomena in composite materials using the fractal space-time theory. Adv. Compos. Mater. Med. Nanotechnol. 477, 477–494 (2011) Petrica, V., Maricel, A.: On the transport phenomena in composite materials using the fractal space-time theory. Adv. Compos. Mater. Med. Nanotechnol. 477, 477–494 (2011)
9.
Zurück zum Zitat Meltzer, M.I.: The potential use of fractals in epidemiology. Prev. Vet. Med. 11(3–4), 255–260 (1991)CrossRef Meltzer, M.I.: The potential use of fractals in epidemiology. Prev. Vet. Med. 11(3–4), 255–260 (1991)CrossRef
11.
Zurück zum Zitat Albertovich, T.D., Aleksandrovna, R.I.: The fractal analysis of the images and signals in medical diagnostics. Fract. Anal. Appl. Health Sci. Soc. Sci. 26, 57 (2017) Albertovich, T.D., Aleksandrovna, R.I.: The fractal analysis of the images and signals in medical diagnostics. Fract. Anal. Appl. Health Sci. Soc. Sci. 26, 57 (2017)
12.
Zurück zum Zitat Karaca, Y., Cattani, C.: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm. Fractals 25(04), 1740001 (2017)CrossRef Karaca, Y., Cattani, C.: Clustering multiple sclerosis subgroups with multifractal methods and self-organizing map algorithm. Fractals 25(04), 1740001 (2017)CrossRef
13.
Zurück zum Zitat Karaca, Y., Moonis, M., Baleanu, D.: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification. Chaos, Solitons Fractals 136, 109820 (2020) MathSciNetCrossRef Karaca, Y., Moonis, M., Baleanu, D.: Fractal and multifractional-based predictive optimization model for stroke subtypes’ classification. Chaos, Solitons Fractals 136, 109820 (2020) MathSciNetCrossRef
14.
Zurück zum Zitat Karaca, Y., Cattani, C., Moonis, M., Bayrak, Ş.: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy \(C\) means and \(K\)-means algorithms. Complexity 2018, 15 pages (2018). Article ID 9034647CrossRef Karaca, Y., Cattani, C., Moonis, M., Bayrak, Ş.: Stroke subtype clustering by multifractal Bayesian denoising with fuzzy \(C\) means and \(K\)-means algorithms. Complexity 2018, 15 pages (2018). Article ID 9034647CrossRef
15.
Zurück zum Zitat Karaca, Y., Moonis, M., Zhang, Y.D., Gezgez, C.: Mobile cloud computing based stroke healthcare system. Int. J. Inf. Manag. 45, 250–261 (2019)CrossRef Karaca, Y., Moonis, M., Zhang, Y.D., Gezgez, C.: Mobile cloud computing based stroke healthcare system. Int. J. Inf. Manag. 45, 250–261 (2019)CrossRef
16.
Zurück zum Zitat Norrving, B.: Oxford Textbook of Stroke and Cerebrovascular Disease. Oxford University Press, Oxford (2014)CrossRef Norrving, B.: Oxford Textbook of Stroke and Cerebrovascular Disease. Oxford University Press, Oxford (2014)CrossRef
17.
Zurück zum Zitat He, L., Wang, J., Zhang, L., Zhang, X., Dong, W., Yang, H.: Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. J. Neurol. Sci. 396, 42–47 (2019)CrossRef He, L., Wang, J., Zhang, L., Zhang, X., Dong, W., Yang, H.: Decreased fractal dimension of heart rate variability is associated with early neurological deterioration and recurrent ischemic stroke after acute ischemic stroke. J. Neurol. Sci. 396, 42–47 (2019)CrossRef
18.
Zurück zum Zitat Smitha, B.: Fractal and multifractal analysis of atherosclerotic plaque in ultrasound images of the carotid artery. Chaos, Solitons Fractals 123, 91–100 (2019)MathSciNetCrossRef Smitha, B.: Fractal and multifractal analysis of atherosclerotic plaque in ultrasound images of the carotid artery. Chaos, Solitons Fractals 123, 91–100 (2019)MathSciNetCrossRef
19.
Zurück zum Zitat Lemmens, S., Devulder, A., Van Keer, K., Bierkens, J., De Boever, P., Stalmans, I.: Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front. Neurosci. 14, 16 (2020)CrossRef Lemmens, S., Devulder, A., Van Keer, K., Bierkens, J., De Boever, P., Stalmans, I.: Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front. Neurosci. 14, 16 (2020)CrossRef
20.
Zurück zum Zitat Appaji, A., et al.: Retinal vascular fractal dimension in bipolar disorder and schizophrenia. J. Affect. Disord. 259, 98–103 (2019)CrossRef Appaji, A., et al.: Retinal vascular fractal dimension in bipolar disorder and schizophrenia. J. Affect. Disord. 259, 98–103 (2019)CrossRef
21.
Zurück zum Zitat Amezquita-Sanchez, J.P., Mammone, N., Morabito, F.C., Marino, S., Adeli, H.: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Methods 322, 88–95 (2019)CrossRef Amezquita-Sanchez, J.P., Mammone, N., Morabito, F.C., Marino, S., Adeli, H.: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Methods 322, 88–95 (2019)CrossRef
22.
Zurück zum Zitat Zhao, P., Zhuo, R., Li, S., Lin, H., Shu, C.M., Laiwang, B., Suo, L.: Fractal characteristics of gas migration channels at different mining heights. Fuel 271, 117479 (2020)CrossRef Zhao, P., Zhuo, R., Li, S., Lin, H., Shu, C.M., Laiwang, B., Suo, L.: Fractal characteristics of gas migration channels at different mining heights. Fuel 271, 117479 (2020)CrossRef
23.
Zurück zum Zitat Zuo, X., Tang, X., Zhou, Y.: Influence of sampling length on estimated fractal dimension of surface profile. Chaos, Solitons Fractals 135, 109755 (2020)MathSciNetCrossRef Zuo, X., Tang, X., Zhou, Y.: Influence of sampling length on estimated fractal dimension of surface profile. Chaos, Solitons Fractals 135, 109755 (2020)MathSciNetCrossRef
24.
Zurück zum Zitat Razminia, K., Razminia, A., Shiryaev, V.I.: Application of fractal geometry to describe reservoirs with complex structures. Commun. Nonlinear Sci. Numer. Simul. 82, 105068 (2020)MathSciNetCrossRef Razminia, K., Razminia, A., Shiryaev, V.I.: Application of fractal geometry to describe reservoirs with complex structures. Commun. Nonlinear Sci. Numer. Simul. 82, 105068 (2020)MathSciNetCrossRef
25.
Zurück zum Zitat Andres, J., Langer, J., Matlach, V.: Fractal-based analysis of sign language. Commun. Nonlinear Sci. Numer. Simul. 84, 105214 (2020)MathSciNetCrossRef Andres, J., Langer, J., Matlach, V.: Fractal-based analysis of sign language. Commun. Nonlinear Sci. Numer. Simul. 84, 105214 (2020)MathSciNetCrossRef
26.
Zurück zum Zitat Raghavendra, U., Acharya, U.R., Adeli, H.: Artificial intelligence techniques for automated diagnosis of neurological disorders. Eur. Neurol. 82, 41–64 (2019)CrossRef Raghavendra, U., Acharya, U.R., Adeli, H.: Artificial intelligence techniques for automated diagnosis of neurological disorders. Eur. Neurol. 82, 41–64 (2019)CrossRef
27.
Zurück zum Zitat Cheon, S., Kim, J., Lim, J.: The use of deep learning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 16(11), 1876 (2019)CrossRef Cheon, S., Kim, J., Lim, J.: The use of deep learning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 16(11), 1876 (2019)CrossRef
28.
Zurück zum Zitat Ge, Y., et al.: Predicting post-stroke pneumonia using deep neural network approaches. Int. J. Med. Inf. 132, 103986 (2019)CrossRef Ge, Y., et al.: Predicting post-stroke pneumonia using deep neural network approaches. Int. J. Med. Inf. 132, 103986 (2019)CrossRef
29.
Zurück zum Zitat Lin, C.H., et al.: Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Comput. Methods Programs Biomed. 190, 105381 (2020)CrossRef Lin, C.H., et al.: Evaluation of machine learning methods to stroke outcome prediction using a nationwide disease registry. Comput. Methods Programs Biomed. 190, 105381 (2020)CrossRef
31.
Zurück zum Zitat The MathWorks. MATLAB (R2019b) The mathWorks, inc., Natick, MA (2019) The MathWorks. MATLAB (R2019b) The mathWorks, inc., Natick, MA (2019)
33.
34.
Zurück zum Zitat Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)CrossRef Lopes, R., Betrouni, N.: Fractal and multifractal analysis: a review. Med. Image Anal. 13(4), 634–649 (2009)CrossRef
35.
Zurück zum Zitat Moreno, P.A., et al.: The human genome: a multifractal analysis. BMC Genom. 12, 506 (2011)CrossRef Moreno, P.A., et al.: The human genome: a multifractal analysis. BMC Genom. 12, 506 (2011)CrossRef
36.
Zurück zum Zitat Barnsley, M.F.S., Saupe, D., Vrscay, E.R.: Signal enhancement based on hölder regularity analysis. IMA Vol. Math. Appl. 132, 197–209 (2002) Barnsley, M.F.S., Saupe, D., Vrscay, E.R.: Signal enhancement based on hölder regularity analysis. IMA Vol. Math. Appl. 132, 197–209 (2002)
37.
Zurück zum Zitat Ben Slimane, M., Ben Omrane, I., Ben Abid, M., Halouani, B., Alshormani, F.: Directional multifractal analysis in the \(L^{p}\) setting. J. Funct. Spaces 2019, 12 pages (2019). Article ID 1691903MATH Ben Slimane, M., Ben Omrane, I., Ben Abid, M., Halouani, B., Alshormani, F.: Directional multifractal analysis in the \(L^{p}\) setting. J. Funct. Spaces 2019, 12 pages (2019). Article ID 1691903MATH
38.
Zurück zum Zitat Levy Vehel, J.: Signal enhancement based on Hölder regularity analysis. Inria technical report (1999) Levy Vehel, J.: Signal enhancement based on Hölder regularity analysis. Inria technical report (1999)
41.
Zurück zum Zitat Jaffard, S. and Melot, C.: Wavelet analysis of fractal boundaries. Part 1: local exponents. Commun. Math. Phys. 258(3), 513–539 (2005) Jaffard, S. and Melot, C.: Wavelet analysis of fractal boundaries. Part 1: local exponents. Commun. Math. Phys. 258(3), 513–539 (2005)
42.
Zurück zum Zitat Ben Slimane, M. and Mélot, C.: Analysis of a fractal boundary: the graph of the knopp function. Abstract Appl. Anal. 2015 14 (2015). Article number 587347 Ben Slimane, M. and Mélot, C.: Analysis of a fractal boundary: the graph of the knopp function. Abstract Appl. Anal. 2015 14 (2015). Article number 587347
43.
Zurück zum Zitat Shao, J., Buldyrev, S.V., Cohen, R., Kitsak, M., Havlin, S., Stanley, H.E.: Fractal boundaries of complex networks. EPL (Europhys. Lett.) 84(4), 48004 (2008) Shao, J., Buldyrev, S.V., Cohen, R., Kitsak, M., Havlin, S., Stanley, H.E.: Fractal boundaries of complex networks. EPL (Europhys. Lett.) 84(4), 48004 (2008)
46.
Zurück zum Zitat Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)MathSciNetCrossRef Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)MathSciNetCrossRef
47.
Zurück zum Zitat Chen, Y.P., Chen, Y., Tong, L.: Sar Image Denoising Based on Multifractal and Regularity Analysis. In Key Engineering Materials. Trans Tech Publications Ltd. 500, 534–539 (2012) Chen, Y.P., Chen, Y., Tong, L.: Sar Image Denoising Based on Multifractal and Regularity Analysis. In Key Engineering Materials. Trans Tech Publications Ltd. 500, 534–539 (2012)
48.
Zurück zum Zitat Karaca, Y., Cattani, C.: Computational methods for data analysis. Walter de Gruyter GmbH, Berlin (2018)MATH Karaca, Y., Cattani, C.: Computational methods for data analysis. Walter de Gruyter GmbH, Berlin (2018)MATH
49.
Zurück zum Zitat Zhang, Y., Sun, Y., Phillips, P., Liu, G., Zhou, X., Wang, S.: A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J. Med. Syst. 40(7), 173 (2016)CrossRef Zhang, Y., Sun, Y., Phillips, P., Liu, G., Zhou, X., Wang, S.: A multilayer perceptron based smart pathological brain detection system by fractional Fourier entropy. J. Med. Syst. 40(7), 173 (2016)CrossRef
Metadaten
Titel
Theory, Analyses and Predictions of Multifractal Formalism and Multifractal Modelling for Stroke Subtypes’ Classification
verfasst von
Yeliz Karaca
Dumitru Baleanu
Majaz Moonis
Yu-Dong Zhang
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-58802-1_30

Premium Partner